
Pair your
Pi to your

smartphone

Discover
the best

components
Run RISC

OS on your
Raspberry Pi

NEW

Raspberry Pi
100% unofficial Vital add-ons Python tips

Imagine, if back in 1999, someone came up to you and told you that in 15 years,
you’d be able to carry a customisable computer that could play games, control
robots, check the temperature in real time, and be used as a remote control in
your pocket. Imagine they said that in 16 years, you could buy this computer

for under a tenner. You would call them mad, wouldn’t you? Well, that madness
has become a reality, ever since the Raspberry Pi took the tech world by storm
in 2012. Whether you’re a skilled programmer or a hobbyist, or even a cosplayer
hoping to add an electronic wearable to your costume, there is a Pi project for
everyone, regardless of skill level or budget. In this new volume of Raspberry
Pi Tips, Tricks & Hacks we’ve collated the best projects for your Pi, from Zero
to 3, to test your skills. Packed full with expert advice on setting up your Pi,

using Python, choosing the best add-ons and downloading the most useful
Pi-compatible apps for your phone, this book is vital for anyone hoping to take

their Pi further than it’s ever been before.

Welcome to

Raspberry Pi

Raspberry Pi

Future Publishing Ltd
Richmond House
33 Richmond Hill

Bournemouth
Dorset BH2 6EZ

 +44 (0) 1202 586200
Website www.futureplc.com

Creative Director Aaron Asadi

Editorial Director Ross Andrews

Editor In Chief Jon White

Production Editor Jasmin Snook

Senior Art Editor Greg Whitaker

Assistant Designer Steve Dacombe

Printed by
William Gibbons, 26 Planetary Road, Willenhall,

West Midlands, WV13 3XT

Distributed in the UK, Eire & the Rest of the World by
Marketforce, 5 Churchill Place, Canary Wharf, London, E14 5HU.

 0203 787 9060 www.marketforce.co.uk

Distributed in Australia by
Gordon & Gotch Australia Pty Ltd, 26 Rodborough Road,

Frenchs Forest, NSW, 2086 Australia
 +61 2 9972 8800 www.gordongotch.com.au

Disclaimer
The publisher cannot accept responsibility for any unsolicited material lost or damaged
in the post. All text and layout is the copyright of Future Publishing Limited. Nothing in

this bookazine may be reproduced in whole or part without the written permission of the
publisher. All copyrights are recognised and used specifically for the purpose of criticism
and review. Although the bookazine has endeavoured to ensure all information is correct

at time of print, prices and availability may change. This bookazine is fully independent and
not affiliated in any way with the companies mentioned herein.

Raspberry Pi Tips, Tricks & Hacks Volume 2 Revised Edition
© 2016 Future Publishing Limited

book series

Part of the

22 52

6 Raspberry Pi Tips, Tricks & Hacks

42

Contents
08 25 maker

projects for Pi 3
22 Develop with Python

30 Get the new Pixel desktop

34 Multitasking with your Pi

36 Build a Pi-powered baby monitor

40 Run RISC OS on your Pi

42 Master essential Sense HAT

skills for an interactive game

50 Practise environmental science

with the Sensly HAT

52 Code a simple synthesiser

58 Display data from another

Raspberry Pi

• Learn about the latest updates

with the new Raspberry Pi 3

• Build a 3D printer

• Set up a WiFi hotspot anywhere

• Capture rare images with a

wildlife camera

• Put together your arcade cabinet

• Blast enemies with a Nerf shuffle

• Control the temperature

Tips
 18 Set up your

Raspberry Pi
Zero today

We’ve all been building Raspberry
Pi robots for a while now – but with
on-board Bluetooth and Wi-Fi?

• Learn the supplies you’ll need

• Get to grips with a soldering kit

• Configure WiFi

• Remotely access your Pi

• Set up a VNC server

58

Raspberry Pi Tips, Tricks & Hacks 7Raspberry Pi Tips, Tricks & Hacks Raspberry Pi Tips, Tricks & Hacks

64

86

8272 Zero-powered wearable

76 Build a Raspberry-Pi

Minecraft console

82 Create a Minecraft

Minesweeper game

86 Control lights with your Pi

90 Stream internet TV to your

Raspberry Pi

92 Underwater drone

94 Anonymise your web traffic with a

Pi Tor router

98 Create your own circuit diagrams

with Fritzing

102 Make a Pi 2 desktop PC

106 Set up a multi-room

sound system

Hacks

64 Xbox arcade
with a Pi Zero

Tricks

114 50 Ways to Hack your Raspberry Pi

122 10 awesome Raspberry Pi

upgrades

128 Hack a robot with Pi-mote

132 Self-driving RC car

136 Build a Pi cluster with

Docker Swan

140 Code a Tempest clone in

FUZE BASIC Part 1

144 Code a Tempest clone in

FUZE BASIC Part 2

148 Code a Tempest clone in

FUZE BASIC Part 3

152 Capture photos at night with the

NoIR Pi camera

156 Locate phones with Bluetooth

The Raspberry
Pi Zero is very
small, and as
such cannot fit
normal-sized
USB and HDMI
connectors on

72

 FOR

THE PI 3 IS 50% FASTER THAN THE PI 2 AND HAS BUILT-IN WI-FI AND

BLUETOOTH. WE SPOKE TO THE FOUNDATION’S DIRECTOR OF

HARDWARE, JAMES ADAMS, TO LEARN MORE, PLUS WE’VE COME UP

WITH 25 EXCITING NEW PROJECTS USING THE PI 3’S WIRELESS TECH

25 maker projects for Raspberry Pi 3

8 Raspberry Pi Tips, Tricks & Hacks

CREATE A MEGA
MEDIA CENTRE

RECORD MUSIC
ON THE GO

MAKE AN
ARCADE CABINET

Raspberry Pi Tips, Tricks & Hacks 9

25 maker projects for Raspberry Pi 3

What are the big changes?
A lot of the Raspberry Pi 3 is the same as

the Raspberry Pi 2. Our strategy for the

Pis from the B+ has been to try and keep

the same form factor. The B+ was really

the fi rst Pi that I worked on when I came

to Raspberry Pi in 2013, and the idea

was that we’ve got this nice form factor

and we want to keep it, so to build the Pi

3 I took the Pi 2 design and literally just

added the extra stuff.

So, we’ve got the new processor

courtesy of Broadcom – they’ve done a

nice uplift. It’s similar to the BCM2836;

the Cortex A7 was taken out and the

A53s were put in, and everything else

has actually stayed the same so you’ve

got backwards compatibility. The clock

speed on the GPU has been uplifted

slightly from 250 to 400 MHz, and to the

PCB itself we’ve added the Wi-Fi and

Bluetooth to the top-left corner. We

had to move the LEDs, unfortunately,

to the bottom-left corner of the board.

There have been a few other little minor

tweaks, but largely it is the same as

the Pi 2 with Wi-Fi and Bluetooth. That

doesn’t mean it was a trivial thing to get

going – actually, the Bluetooth and Wi-Fi

was a big engineering challenge.

How much has the speed improved
with the new BCM2837?
We’re saying about 50 per cent [from

the Raspberry Pi 2]. In reality, you can

usually see a bit more improvement

than that – it really depends on what

features of the processor things are

Left The new 1.2GHz BCM2837 contains four
ARM Cortex-A53 cores

WI-FI &

BLUETOOTH SAME FORM FACTOR

4X ARM CORTEX-A54, 1.2GHZ

James Adams is the director of

hardware at the Raspberry Pi

Foundation, where he manages the

current production hardware and

develops new Raspberry Pi products.

He fi rst joined the team back in 2013

and since then has led the design of

the Raspberry Pi Model B+, the 2B

and the new 3B. It has been whispered

that James is also a demon welder

and brewer of beer.

taking advantage of. In everyday use, you’ll get about 50

per cent faster, so about 33 per cent clock-to-clock speed

increase on the core plus the uplift from 900 to 1.2 GHz. But

then the NEON unit in the A53 is, I think, double the width of

the one in the A7, so if you have things that take advantage of

ARM NEON then they’ll go quite a lot faster. I think there are

some other branch-prediction cache improvements in the

core that, in things like web browsing, can make more of a

difference – it really depends on the workload. The A53 is just

a much newer and slightly fatter core.

You’ve got 64-bit, which we’re not using at the moment, but

we have had people come to us with preliminary Linux kernels

running in 64-bit mode. I think Eben said publicly that we’re

just going to monitor that, see what we think once we see that

running, whether we actually do our own 64-bit OS version,

which would be completely separate from the current 32-bit,

or if we keep 32-bit going forward, which is nicely backwards

compatible with all previous Pis.

Why was 64-bit functionality added?
At the point we were putting a new core into the 2837, we were

considering the options. All the new ARM cores basically have

64-bit support anyway – it’s a nice

25 maker projects for Raspberry Pi 3

10 Raspberry Pi Tips, Tricks & Hacks

The Pi will throttle the CPU speed when it reaches a hot

temperature – this is set to 85°C in the fi rmware. We’re still

talking to Gareth to see why he seems to get his Pi up to a

slightly hotter temperature. There is a bit of a temperature

gradient across the chip – the on-die temperature sensor is

in one corner of the chip – but in any case, we’re not worried

about it and we may update our temperature algorithms to be

more accurate, given Gareth’s data.

Having said that, though, these chips can get hot –

especially when pushed hard, and they will throttle; they’ll

drop their frequency and voltage. So a Pi 2 or 3 would benefi t

from a heat sink to reduce the amount of throttling if you are

using it in a very heavy workload continuously, whereas the

Pi 1, you could run it fl at-out all day and it would barely get

warm. There are now four signifi cantly fatter cores running at

a much faster rate, so we’re just bumping up against physics.

Your mobile phones work in the same way – they do this sprint

performance, where they’ll ramp the core right up to as fast as

possible, your phone will get warm, and as soon as it’s getting

to the point where it’s too hot, they’ll turn the frequency and

voltage down.

But for the standard ‘bursty’ workloads, like web browsing,

the chip on a Raspberry Pi cools down really quickly if you

stop doing a lot of work on it, so the board itself is quite a good

heatsink. Heat goes through the bottom of the solder balls

and into the ground planes of the board, and the board’s got

quite a lot of metal things soldered onto it – USB connectors

and such. It is important to stress that [the heat issue] is not

going to affect the lifetime of the Pi at all, we’re not really

worried about that.

feature for the future – but we’re very, very committed to

keeping form factors and software backwards-compatible,

at least as far as possible. So currently there are no plans to

do a 64-bit version of Raspbian. It will require two completely

separate OSs that we’ll then have to manage. We’d have to

recompile everything in userland to be 64-bit, so it’s an awful

lot of work, and then you’ve got the support burden as well.

Technically, it’s possible, and we’ll see what performance

gains 64-bit Linux has, and then we’ll take a view in the future

as to whether it’s worth it or not. Obviously, 64-bit ARMv8 is

the way that ARM cores are going, and all future ARM cores

will support it – so it’s a thing, but we don’t have an offi cial

position. We’ll see what happens; I think it’s a fi ne way to be.

A few people, like our reviewer Gareth Halfacree,
have noticed that the Pi 3 runs hotter than its
predecessors – should people restrict its uptime or is
it still fi ne for extended use?
The heating issue is something we can reproduce in a special

case. One thing I will say is that the Raspberry Pi 2 is similar

– it just takes a little bit longer to heat up. In terms of what’s

actually changed, the frequency has gone up a bit and we’ve

got a slightly bigger ARM core, so that core does generate

more heat. Now, the Pi 2 core still generated quite a lot of

heat compared to the Pi 1, if you run it fl at-out in the kind of

use cases that Gareth has been playing with. But will it kill

your Pi? Absolutely not. The 2837 SoC is qualifi ed for 125°C

temperature running for, I think, ten years of life – that’s where

they cut it off and say ‘That’s fi ne’ – so we’re not really worried

about the hardware falling over.

Right James is also a part of the FiveNinjas
team that made a Compute Module-based

media player

No FM
There’s been speculation that the

Pi 3 boasts an FM receiver, but this

is sadly not the case. “The FM is

effectively disabled,” confi rms James.

“The Wi-Fi chip is a BGA device, so

underneath you’ve got tiny bumps

of solder and they have to solder

onto the PCB. Now, on that chip they

are pitched 0.4mm apart, which is

actually designed for higher-tech

mobile phone PCBs – higher-tech

than the board that the Pi uses. One

of the reasons we got the cost down is

because we use low-tech PCB design,

so actually, through some clever

tricks, we’ve managed to use that

higher-tech part on the lower-tech

board, but at the expense of FM – too

many signals to route out, and you

have to resort to a higher-tech PCB.”

Raspberry Pi Tips, Tricks & Hacks 11

25 maker projects for Raspberry Pi 3

Left Among the minor changes is a return to
the old slide-lock microSD card slot – no more
push-to-eject

the radio performance; they’re much,

much more sensitive than general

digital designs.

It was a little bit more of a challenge

than usual – all in all, just quite a lot of

work to put RF on something! Most of

the time was spent on that – despite

the fact that we’ve changed very little

on the Pi, there is probably as much

engineering effort going from Pi 2 to

Pi 3 as there was from B+ to Pi 2. The

nice thing is that now we’ve done it,

we’ve gone quite a long way up the

learning curve on how to do it again

– as Raspberry Pi, we now have those

engineering skills.

U.FL antenna
The conformance testing involved

radiated and conducted modes. With

the latter, “rather than pumping it

into the aerial and spraying the RF

into the air,” James explains to us-,

“you plug a cable into the tester. For

that, you need to have some kind of

connector on it. There’s a tiny shorting

resistor you connect to the U.FL

connector, and you can then connect

an antenna or, in our case, all the

test equipment we needed. I would

say that if you want to use the U.FL

antenna, don’t – the FCC don’t like it.

But, theoretically, you could scrape

the soldering mask off, solder a U.FL

on, and connect an antenna.”

25 maker projects for Raspberry Pi 3

It was a little bit
more of a challenge
for us than usual – all
in all, it is just quite a
lot of work to put RF
on something!

When we asked about Wi-Fi and Bluetooth last year,
the Foundation said that it would, essentially, be too
expensive to include these components. What has
changed between then and now?
There are a few factors. We’ve always wanted to put Bluetooth

and Wi-Fi on the Pi because it’s a natural fi t – most people

who buy a laptop now will have Wi-Fi; wired Ethernet is

sometimes not even supported on laptops, if you buy from

Apple. So it’s an obvious fi t. Now, the challenge with that is

obviously the price. We worked very hard on the Pi 2 building

materials to work with suppliers and get some cost out of it, so

we could afford to put the device on. We’ve managed to make

a space in the costing to fi t the Wi-Fi, and Broadcom’s Wi-Fi

solution is really great because it’s quite low-cost, doesn’t use

a lot of external components.

The other side of it is actually that the radio design,

development and conformance testing is a very big

engineering task. As soon as your product starts radiating,

you run into a whole big pile of conformance issues

– essentially, every country wants you to do testing to be

within their radio spectrum rules, and it just puts a lot more

burden on the tests. So we had to work very closely with

Broadcom to both set the chip into all the required test modes

for the test houses, which was an awful lot of effort. And

also just general RF design is harder than standard design,

because if you have things like electrical crosstalk or your

power supply is next to something noisy, it can really affect

TAKE ADVANTAGE OF YOUR ON-BOARD

WI-FI AND BLUETOOTH WITH THESE NEW

AND UPGRADED PROJECT IDEAS

1

2

3

Wildlife camera

Weather station

Robot

Parts

Parts

Parts

While you can pick up a kit for this, like the

one from Naturebytes (bit.ly/1PdUNue), it’s

easy to put your own wildlife camera together.

Make sure that you have a waterproof case to

protect your Pi, the portable power supply and

your other electrical components against any

damage from rainwater; there are 3D models

(STL fi les) available, which you can easily tweak to fi t

the Pi 3 using a simple program like 123D Design. Then

you just need to use waterproof sealing on any joints

and on the hole through which the camera module

points – check out this guide: bit.ly/1mgUA2X.

You can set your Pi up to shoot during particular

times by triggering a Python script with a cron job – just

add a real-time clock module via your GPIO header so

the Pi knows what time it is while offl ine. If your Pi is

within reach of your Wi-Fi, it can automatically upload

or tweet photos for you. If you would prefer your camera

to only shoot when there is an animal to capture, set up

a PIR (passive infrared sensor) to monitor for changes

to the infrared picture it is seeing, which would indicate

a moving source of (body) heat.

With the Pi 3, you can hide your camera enclosure

away in some really tricky hiding places (buried in

bushes, tucked up inside trees…) and still have easy

access to it via the on-board Wi-Fi and SSH if you need

to make any changes to your scripts.

While a waterproof case is also a good

idea here, some of the sensors would

benefi t from being outside the case,

like the temperature sensor – there

are waterproofed variants available for

some of them. You could always use

a mix of sensors, so you can take an

average of the readings and also have

some built-in redundancy.

The idea here is to connect up lots of

sensors via the GPIOs in order to get

a reading of the weather state in your

area. With the Wi-Fi and portable power

pack, you can have the weather station

in your garden connected to your home

router (or a Wi-Fi repeater!) for an

internet connection, and you can post

all of the data onto an easily-accessed

WordPress site, hosted on the Pi.

Now, we’ve all been building Raspberry

Pi robots for a while now – but with

on-board Bluetooth and Wi-Fi? For a

start, you don’t need a Wi-Fi dongle in

order to access your robot and make

any changes to the control script on the

fl y, meaning that you can reduce the

footprint of your design. And if you do

use a dongle then you could even drive

your robot around to use as a mobile

Wi-Fi signal repeater! By setting up

the BlueZ stack, you could also use

your robot to control Bluetooth LE

devices – perhaps mounting a pair of

speakers on the back of your bot – as

well as use Bluetooth devices such

as the Wiimote to control movement

(see bit.ly/1RRh4Qu). Get yourself a

Bluetooth headset and you could even

set up a voice-controlled application

using something like Jasper (http://

jasperproject.github.io), which listens

out for your spoken commands.

 – Waterproof
case with a
camera mount

 – Portable power
pack

 – Camera module
 – PIR sensor
 – Real-time clock

 – DHT22 sensor
 – BMP085 sensor
 – TGS 2600
 – UV1-01 sensor
 – LDR (light

dependent
resistor)

 – ADC (analogue-to-
digital convertor)

 – Wind vane
 – Anemometer

 – Wi-Fi dongle
 – Bluetooth

speakers
 – Bluetooth headset

Borrow a
screen

Connect to a PC via Ethernet

and use Remote Desktop. You

still have internet access via

the Wi-Fi.

12 Raspberry Pi Tips, Tricks & Hacks

Get your monitor, speakers, keyboard and mouse plugged in, then install OSMC

– this is your main home theatre PC. Confi gure a Bluetooth remote control, or a

remote control app on your smartphone or tablet. Connect a powered external

hard drive to your Raspberry Pi, loaded up with all your

favourite music, movies and TV shows. Set up your OSMC

media centre by adding the content stored on your external

hard drive, and add new fi les from

USB fl ash drives as and when

you plug them in. Set your Pi up

as a media server for your mobile

devices. Finally, browse through

OSMC’s App Store for things like a

torrent client and TV tuner.

6

4

5

3D printer

Mega media centre

Wi-Fi
hotspot

Super
server

Parts

You can control a 3D printer using the

Pi 3, and the extra horsepower means

that you can handle the slicing on

the Pi as well. First of all, you’ll need

to either set up a bought kit or look

into the RepRap project – RepRaps

are 3D-printable 3D printers, so

you just need to fi nd a friend with a

machine or a high street 3D printer in

order to run off the parts, then pick

up the non-printable components

(start here: http://reprap.org/wiki/

RepRapPro_Huxley).

 With your 3D printer set up, install

the OctoPi image onto your SD card

and then use the included software,

such as OctoPrint and

CuraEngine, to handle your G-Code

and slicing, driving it all via Wi-Fi. You

could even set up the camera module

inside the 3D printer and record time-

lapse footage of your prints, though

you’ll want a powered external hard

drive as well to store the video fi les.

Set up your Pi as a wireless access

point for other devices, which assigns IP

addresses. Connect it to the internet via

ethernet, and it will act as a bridge for

the devices connecting

via its Wi-Fi module.

If you’re trying to get

a connection down

into your garden, use

a portable power pack

and plug in a USB Wi-

Fi dongle. You then use

the on-board Wi-Fi to

connect to your home

router and the plug-in

Wi-Fi to broadcast into

your shed.

The Raspberry Pi 3 can keep up with

huge amounts of page requests – the

Pi Foundation ran an experiment during

the Pi 3 launch to see if it could keep up

with the huge number of visitors (http://

bit.ly/22mCjRR), and over 12 hours it

served 1.5 million requests. So, even

if your website is huge, you can serve

it from your Pi, and now it’s got Wi-Fi

you can confi gure it remotely while

it’s tucked away in a

drawer somewhere.

 – 3D printer
 – Camera module
 – Powered external

hard drive

Parts
 – Home theatre

peripherals
 – Bluetooth

remote
 – Powered

external hard
drive

Parts
 – Portable

power pack
– Wi-Fi dongle

PiBook

PiPad

Smart TV

Speaker

Fit a display into a 3D-printed laptop case,

along with a keyboard and trackpad. Use

tiny Bluetooth speakers for audio and

connect to the internet via Wi-Fi. Switch

to a portable power pack if you want to go

mobile. Run something like Ubuntu MATE

if you want to complete the look.

Mount your Pi on the back of the offi cial

touchscreen display and wire it all up.

Use a regular power supply, and if you

want to be untethered then switch to a

portable power pack. Be sure to pair it

with a Bluetooth keyboard so you can

get to the command line.

Install Kodi, then mount your Pi onto the

back of your TV. Connect your TV to the Pi

via HDMI, using adaptors if your TV is DVI/

SVGA. Plug in powered external storage

to add videos, and set yourself up with

some streaming websites. Confi gure a

Bluetooth remote or grab the Kodi app.

Connect your speakers to the Pi via a

Class D amplifi er. Fit the setup inside a

case, leaving a space for the power cable

or including a portable power pack. Set

up a Logitech Media Server on your Pi

and control playback

using the Squeezer

app. Owners of a

Bluetooth speaker can

use BlueZ.

8

9

10

11

Practical
gadgets

7

Raspberry Pi Tips, Tricks & Hacks 13

Go Wireless
Invest in a Bluetooth

keyboard/mouse combo and

you'll free up all four of your

USB ports

Smart Home
Technology

Auto-lights
Many Bluetooth LE light bulbs can be

reverse-engineered to work with BlueZ

– fi nd out which library to download to

work with it at bit.ly/1UjxGq8. You could

also choose to use Bluetooth home

automation switches – plug your non-

smart lights into those and then control

the switch itself.

12

Temperature
control

Wire sensors like the DHT22 to your

Pi, stick everything inside a case, then

move the unit around the house to

get readings. Upload all the data to a

database on your Pi’s web server to

access it from a web page, and then

fi nd out where the hot and cold spots

are in your home.

14

Plant monitor
Use an SHT10 soil monitor to sense

the temperature and moisture of the

earth around the roots, then feed that

data to a web server on your Pi that

you can check via your phone. Add a

portable power pack and a waterproof

enclosure for the Pi, and you can leave it

in the garden.

13

RC sockets
WeMo switches plug straight into your

wall socket. You can then plug your

non-smart appliance into that socket,

and can remotely switch it on and off

by sending Bluetooth commands from

your Pi over the BlueZ stack. You can

then combine this with cronjobs, or a

mic and PocketSphinx…

15

14 Raspberry Pi Tips, Tricks & Hacks

16 Drone
Parts

There are some great resources if you want to build your

own drone – places like diydrones.com and instructables.

com – including all the motors you’ll need and 3D models for a

chassis. Or you could instead purchase a complete drone kit.

To actually power and drive the drone, you can use your Pi 3

with the new PXFmini autopilot shield. It’s an excellent device

designed for the Pi Zero but is perfectly compatible with the

Raspberry Pi 3, and its extra CPU power gives it a signifi cant

performance boost over a Pi Zero or Pi 2 drone. The PXFmini

includes a gyro and compass, accelerometer, magnetometer,

pressure and temperature sensor, plus an ADC – a very handy,

compact bit of kit! And with the Pi 3’s on-board Wi-Fi and

Bluetooth, you won’t need any extra modules in order to control

it while it’s in the air.

 – Drone kit
 – PXFmini

autopilot shield

17 18
On-location
recording
studio

Performance
kit live audio

Add-ons like the

early Wolfson Audio

Card and the Pi-3

compatible Cirrus Logic

Audio Card enable

you to handle audio

far better on your Pi. With an audio card,

you can take advantage of tiny on-board

mics or plug in your own to capture audio.

There are also jacks for stereo line input,

into which you can plug your instruments

to capture high quality audio directly. You

can also plug in external amplifi ers or

powered speakers. The power of the Pi

3 means that you’ll be able to handle the

recording without slowdown, and if you

want to fi t a display as well (or use a VNC

app) then you can use Audacity to edit

your audio on-location.

Set up your

speakers using the

Class D amplifi er

and you’ve got

your audio output

sorted. Connect

your instrument via the USB sound

card, and then set up the Guitarix: this

is a virtual guitar amplifi er that can

take your raw input, add an effect,

then deliver a processed stereo signal

out to your speakers. If you pre-set

a few different effects, you can set

them up to be triggered by your

GPIO-connected push-buttons, or a

button panel add-on. Again, with the

souped-up Pi 3, you can now handle this

level of audio processing comfortably.

Alternatively, you could even have the Pi

automatically upload recorded tracks to

your Dropbox via Wi-Fi.

Parts
 – Cirrus Logic

Audio Card
 – Microphones
 – Instruments

Parts
 – USB sound card
 – Button input
 – Class D amplifier
 – Speakers

Phone
your Pi

Need to check something

but your Pi is inaccessibly

buried inside a project?

Use JuiceSSH

25 maker projects for Raspberry Pi 3

25 maker projects for Raspberry Pi 3

Practical
gadgets

Raspberry Pi Tips, Tricks & Hacks 15

19

Arcade Touch Table

Arcade Cabinet

Car entertainment

Parts

Parts

Parts

Wire up the offi cial touchscreen via the GPIOs and confi gure the

display for touch input. Build it into the surface of a table. Add

capacitive touch sensors in a D-pad plus buttons layout and

install speakers. Now follow the method

used by Frederick Vandenbosch for the

surface (see bit.ly/1lwEMJ8) – lay down

a sheet of clear Plexi over your capacitive

touch sensors, add a couple of layers of

paper to obscure the components, then

another layer of Plexi. The capacitive

touch sensors should be sensitive enough

for you to trigger them by placing your

hands over the surface, and you can even

shine LEDs through the paper. Now set up

RetroPie.

Grab an HDMI monitor (or DVI with an adaptor) and build it

into a chassis for the cabinet, along with speakers. Fit the

joystick and buttons, then wire them up to the GPIO pins. Install

RetroPie on the Pi, add the ROMs that you own, confi gure the

joystick and buttons, then confi gure any Bluetooth or USB

gamepads you have for additional players. Fit the Pi into the

cabinet – if you need to adjust your setup, you can either use

SSH, a Bluetooth keyboard/mouse, or leave access to two USB

ports for a keyboard and mouse.

Set up a Kodi media centre on your Raspberry Pi and add a

touchscreen display to make controlling it easy while driving.

Install the unit into your car inside the radio slot, and add wired

or wireless speakers, since you have your on-board Wi-Fi.

Check out bit.ly/1jdL8rQ for a little inspiration. Put a Bluetooth

keyboard somewhere handy and also grab any media-loaded

fl ash drives you have. Install a Kodi remote app onto your

smartphone, set it up and then and use it to control the car

stereo. You can also set up a portable wireless hotspot on your

mobile, with your 3G connection, and then access your hotspot

using the Pi’s Wi-Fi module. For the fi nishing touch, run Navit

with TTS output for a true sat-nav system.

 – Coffee table
(bought/made)

 – Official 7”
touchscreen
display

 – Speakers
 – 6-8 Capacitive

touch sensors
(Pi Desk ones)

 – Cabinet
(bought/made)

 – Monitor
 – Speakers
 – Joystick &

buttons
 – Gamepads

 – Touchscreen
display

 – Back seat
displays

 – Speakers
 – Bluetooth

keyboard/mouse
combo

21

20

25 maker projects for Raspberry Pi 3

Smart Toys

Nerf shuffle

Wireless projector

Minecraft
magic wand

Find a medium-to-large toy and break

into it so that you can hide the Pi. Now wire

up your LEDs, camera module and mini

loudspeaker, then seal the toy back up

again. If you run a web server using the Pi’s

Wi-Fi then you can write a simple control

interface to activate lights and sounds.

Write a simple script to shuffl e your

music playlist on a given input, which in

this case can be a shot from a Nerf gun.

Wire up a medium vibration sensor so

that it can detect a hit on your target,

then pass that input to your script. Fire

gun, hit target, change song. Give this a

read: bit.ly/1RR9YLN.

Get something like the Brookstone

Pocket Projector and connect it to your

Pi, stick the setup inside an enclosure

and reposition a projected display on

the fl y. If the resolution isn’t quite there,

the Pi 3 can handle a smooth VNC

connection to your computer over Wi-Fi.

Connect your Pi to the Wiimote via

Bluetooth and then confi gure it with the

CWiid Python module (bit.ly/1Wtzb2Z).

With the Wiimote set up, you can now

use the Wiimote buttons to trigger

pre-made Python scripts to hack your

Minecraft world.

22

24

23

25

Tips
• Set up a VNC server

• Remotely access your Pi

• Configure WiFi

• Get to grips with a soldering kit

• Learn the supplies you’ll need

16 Raspberry Pi Tips, Tricks & Hacks

 18 Set up your Pi Zero

22 Develop with Python

30 Get the new Pixel desktop

34 Multitasking with your Pi

36 Build a Pi-powered baby monitor

40 Run RISC OS on your Pi

42 Master essential Sense HAT skills for

 an interactive game

50 Practise environmental science with

the Sensly HAT

52 Code a simple synthesiser

58 Networked Sensor Display with

Pimoroni Scroll pHAT

 Get to grips with a soldering kit• Get to grips with a soldering kit

 Master essential Sense HAT skills for 42 Master essential Sense HAT skills for Master essential Sense HAT skills for Master essential Sense HAT skills for

 Practise environmental science with

 Master essential Sense HAT skills for

 Get to grips with a soldering kit

 Learn the supplies you’ll need

 Remotely access your Pi

 Configure WiFi

 Get to grips with a soldering kit

 Set up a VNC server

 Develop with Python

 Get the new Pixel desktop

 Multitasking with your Pi

 Build a Pi-powered baby monitor

 Run RISC OS on your Pi

 Master essential Sense HAT skills for Master essential Sense HAT skills for

 an interactive game

 Practise environmental science with

the Sensly HAT

 Code a simple synthesiser

Networked Sensor Display with

Pimoroni Scroll pHAT

 Get to grips with a soldering kit

 Master essential Sense HAT skills for

 Get to grips with a soldering kit

 Learn the supplies you’ll need

 Remotely access your Pi

 Get to grips with a soldering kit

 Get the new Pixel desktop

 Multitasking with your Pi

 Build a Pi-powered baby monitor

 Master essential Sense HAT skills for Master essential Sense HAT skills for

 Practise environmental science with

 Code a simple synthesiser

Networked Sensor Display with

 Get to grips with a soldering kit

 Master essential Sense HAT skills for

 Get to grips with a soldering kit

 Learn the supplies you’ll need

 Remotely access your Pi

 Configure WiFi

 Get to grips with a soldering kit

 Set up a VNC server

 Develop with Python

 Get the new Pixel desktop

 Multitasking with your Pi

 Build a Pi-powered baby monitor

 Run RISC OS on your Pi

 Master essential Sense HAT skills for Master essential Sense HAT skills for

 an interactive game

 Practise environmental science with

the Sensly HAT

 Code a simple synthesiser

Networked Sensor Display with

Pimoroni Scroll pHAT

 Get to grips with a soldering kit

 Master essential Sense HAT skills for

18

Get to grips with your
Raspberry Pi Zero, either
as a headless device or
for use with a screen
and keyboard

Raspberry Pi Tips, Tricks & Hacks 17Raspberry Pi Tips, Tricks & Hacks Raspberry Pi Tips, Tricks & Hacks

Discover the
Sensly HAT

add-on

Master
the Python

language

Get scientific
with your

Sensly HAT

36

42 58

22

Tips | Tricks | Hacks

Get to grips with your Raspberry Pi Zero, either as a
headless device or for use with a screen and keyboard

Set up your Pi Zero

So you’ve picked up one of the tiny yet powerful Zeros, but before
the coding fun can begin, you need to get more familiar with
it. Don’t worry; we’ll walk you through the Raspberry Pi Zero, the

required cables, how to prepare a NOOBS SD card, and how to solder

the GPIO header onto the Pi. Once the Pi is working and booted

we’ll show you how to get it working on Wi-Fi through the Raspbian

user interface. You’ll need a USB hub for this, or even just to use a

keyboard and mouse together. We’ll also show you how to prepare

a Raspbian SD card for headless use (either VNC or SSH) with only a

Wi-Fi adapter or USB-to-Ethernet adaptor.

01 Raspberry Pi Zero Cable Overview
The Raspberry Pi Zero is very small, and as such cannot fi t

normal-sized USB and HDMI connectors on. To use it, you therefore

need adaptors that break out microUSB into full-size USB and

mini HDMI to full-size HDMI. You also need to be very careful when

connecting the microUSB cables as the microUSB power cable will

fi t into the connector meant for USB data. It‘s easy to tell them

apart though, as they’re labelled, and the USB data connector

is in between the HDMI and power connectors.

What you’ll need
 Raspberry Pi Zero

 microUSB power supply

 Soldering iron and solder

 Pi Zero adaptor bundle

 Monitor, mouse and

keyboard (optional)

 USB Wi-Fi or USB Ethernet

adaptor (optional)

 USB hub (optional)

18 Raspberry Pi Tips, Tricks & Hacks

Raspberry Pi Tips, Tricks & Hacks 19

Tips | Tricks | Hacks

02 GPIO headers
Soldering your brand new Raspberry Pi Zero might seem

like a scary prospect at fi rst, but it’s not that diffi cult! What is

diffi cult, however, is snapping off the correct number of GPIO

header pins (40), as the kit supplies more than 40. It’s also well

worth noting at this point that it doesn’t matter too much if you

mess up and end up missing a couple of the bottom pins!

03 Soldering kits
Soldering irons are very cheap these days. If you are

going to be doing a lot of soldering then it’s probably worth

getting a temperature-controlled one where you can change

the tip. However, the kit we used with a soldering iron, stand,

solder sucker and some lead-free solder was £8 on Amazon.

We managed to solder the GPIO pins using this kit no problem.

05 Solder the GPIO headers
Here comes the bit you might have been dreading,

but don’t worry! Make sure you have wet the sponge in the

soldering iron holder, as you will need to wipe the iron on the

sponge to keep the tip clean. If this is the fi rst time your iron

has been used, the heating element will probably give off a

lot of smoke for the fi rst few minutes, so don’t worry if that

happens. Still, be mindful of your safety and make sure that

you are soldering in a well-ventilated area – try not to breathe

in any fumes.

Once the iron is hot, apply some solder to the tip and wipe

any excess solder on the sponge. Then start to solder the

pins. For each pin, touch the tip of the iron on the bottom of

the GPIO header and the metal contact on the Pi, then apply a

very small amount of solder. Once the solder has fl owed onto

the pin and the metal contact, then you can remove the iron.

If there is too much solder then you can reheat the solder and

use the solder sucker to remove it.

Take breaks when soldering the GPIO headers for a couple

of reasons: 1) you don’t want to overheat any components on

the Pi, and 2) you can melt the plastic of the GPIO headers and

that will allow the pin to fall through. Keep wiping the tip of the

iron on the sponge to keep it clean throughout the soldering

process. Make sure you unplug the iron and put it somewhere

safe to cool down when you are fi nished.

04 Holding the GPIO headers in place
Before you can solder the GPIO headers, you need to

be able to hold them in place. We recommend putting some

blu-tack on either side of the pins for this. This also has the

advantage that you can fl ip the Pi over and then use the blu-

tack to keep it in place on a table while you are soldering. The

blu-tack should just easily peel off once you are done.

If soldering the GPIO

headers went well for

you, you could take it

to the next level and

attempt to solder the

internals of a USB Wi-

Fi adapter straight

onto the Pi Zero. This

is useful if you really

need to save space

and are using the Pi

Zero as an Internet

of Things device.

See hackaday.

com/2015/11/28/

fi rst-raspberry-pi-

zero-hack-piggy-

back-wifi for more

details on this.

Add Wi-Fi
capability

If you are going to be doing
a lot of soldering then it’s
probably worth getting a
temperature-controlled
soldering iron

Left Once you’ve soldered the header into
place, your Pi Zero should resemble any

other Raspberry Pi

Tips | Tricks | Hacks

The Pi Zero’s small

size means that you

can fi t it inside some

gaming controllers.

In fact, we know for

sure that It fi ts inside

the original Xbox

controller because

we’ve tracked down

someone who has

done it! Next issue

we’ll be running their

full write-up of the

Xbox Zero project,

so keep an eye out

for that in LU&D 163,

and make sure you’ve

got an old gamepad

kicking around that

you don’t mind taking

apart for this!

Retro
gaming

06 Prepare NOOBS SD Card
See www.raspberrypi.org/help/noobs-setup for more

details. NOOBS requires an SD card formatted as FAT32. You

then need to download the latest NOOBS image from https://

downloads.raspberrypi.org/NOOBS_latest and then unzip it to

the SD card. On Linux, the steps are as follows:

 sudo parted /dev/mmcblk0
 (parted) mktable msdos
 (parted) mkpart primary fat32 0% 100%
 (parted) quit
 sudo mkfs.vfat /dev/mmcblk0p1
 cd /mnt
 sudo mkdir pi
 sudo mount /dev/mmcblk0p1 pi
 cd pi
 sudo unzip ~/Downloads/NOOBS_v1_5_0.zip
 sync
 cd ..
 sudo umount pi

07 Boot NOOBS and install Raspbian
Connect your Pi Zero up as shown in the fi rst step. The

minimum you need connected for a NOOBS install is a monitor

and a keyboard. However, a mouse and either an Ethernet

adaptor or Wi-Fi adaptor are also very useful. Press Enter to

select Raspbian and then press I to install. Then press Enter to

agree. Once it is fi nished it will say ‘OS installed successfully’.

Press OK and your Pi will reboot into Raspbian. Alternatively,

if you don’t want to use NOOBS, you can fl ash Raspbian to an

SD card in the usual manner. Raspbian will boot into a desktop

environment by default.

08 Confi gure Wi-Fi
If you are using a USB-to-Ethernet adaptor then the Pi

should already be connected to the internet. If you are using a

Wi-Fi adapter then you will need to confi gure it to connect to your

wireless network. We are using an Edimax EW-7811UN, which

works perfectly with the Pi out of the box. Once at the Raspbian

desktop, you can click on the network icon in order to see the

available wireless networks. Once you click on one it will ask you

for the password. After that it should be associated; you can

hover your mouse over the icon and see the networks that you

are connected to.

09 Confi gure Wi-Fi from another machine
If you want to use the Pi Zero as a headless device with

Wi-Fi then you can prepare an SD card using another Linux

machine that will already be confi gured to connect to the correct

Wi-Fi network. You have to mount the SD card and edit /etc/wpa_

supplicant/wpa_supplicant.conf, which is the same fi le that is

confi gured by the Raspbian user interface from the previous

step. Insert the SD card into your Linux machine and work out

what the device is called.

 dmesg | tail -n 3
 [320516.612984] mmc0: new high speed SDHC card at
address 0001

 [320516.613437] mmcblk0: mmc0:0001 SD8GB 7.35 GiB

So the device is /dev/mmcblk0 – now we need to work out which

20 Raspberry Pi Tips, Tricks & Hacks

Data The power port, on the right, is
micro-USB as usual. The data port beside it
is now micro-USB as well, so you will likely
need a micro-USB-to-USB adaptor

GPIO Once you’ve soldered on a 2x20
male header, your GPIOs will work as
usual. To the right, you can see the four
unpopulated pins for video output and a
reset switch

Video You’ll need a mini-HDMI-to-
HDMI adaptor to use this audio/video
port, although you can also use the
RCA composite video output via the
unpopulated pin

Raspberry Pi Tips, Tricks & Hacks 21

Tips | Tricks | Hacks

Left The Zero may
be tiny but it is
just as good for
programming

partition number the root partition is (this will be different on a

Raspbian image; we are using a NOOBS image here).

 sudo parted /dev/mmcblk0 print

This will give you a list of the partitions. The largest partition

will be the root partition. In this case it’s partition 7, so the root

fi lesystem is at /dev/mmcblk0p7. To mount the SD card and edit

the wpa_supplicant.conf fi le, do the following.

 cd /mnt
 sudo mkdir pi
 sudo mount /dev/mmcblk0p7 pi/
 cd pi/
 sudo nano etc/wpa_supplicant/wpa_supplicant.conf

Then fi ll in your Wi-Fi details:

 network={
 ssid=“your_wifi_network”
 psk=“your_wifi_password”
 key_mgmt=WPA-PSK
 }

Then fi nally:

 cd ..
 sudo umount pi/

10 Remotely access your Pi
You can use nmap to scan the local network to fi nd

a Raspberry Pi. You need to know the address range of your

local network (common networks are 192.168.1.0/24, and

192.168.2.0/24). You can fi nd it with the ip addr command. nmap

-p22 -sV 192.168.157.0/24 will scan for a list of devices with SSH

open. Example output:

 Nmap scan report for 192.168.157.29
 Host is up (0.070s latency).
 PORT STATE SERVICE VERSION
 22/tcp open ssh (protocol 2.0)

Then you can SSH in with:

 ssh pi@192.168.157.29

The password is ‘raspberry’. If you are using the Pi headless,

you’ll want to disable the user interface that is started on boot

by default:

 sudo systemctl set-default multi-user.target

11 Set up a VNC server
VNC stands for Virtual Network Computing. Using VNC

you can access the Raspbian desktop over the network (meaning

you only need power and Ethernet/Wi-Fi connected). There is

no audio support, but for any other tasks (including the use of

pygame) VNC should provide acceptable performance. You can

install a VNC server with the following commands:

 sudo apt-get update
 sudo apt-get install tightvncserver

There are several free VNC clients available so a search engine

will help you fi nd a suitable one. To start a VNC session on

your Pi, log in over SSH and then run tightvncserver. You will

be prompted to enter a password the fi rst time you run it. You

can specify a screen resolution with the -geometry option:

for example, -geometry 1024x768. You can kill an existing vnc

session with tightvncserver -kill :1, where 1 is the session

number. To connect to that session on a Linux machine,

you could use the command: vncviewer 192.168.157.29:1,

substituting for the IP address of your Raspberry Pi.

22 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Python is relied upon by web developers, academic
researchers and engineers across the world. Here’s how to

put your Python skills to professional use

Raspberry Pi Tips, Tricks & Hacks 23

Tips | Tricks | Hacks

System administration

System administration tasks are some of the most annoying
things that you need to deal with when you have to maintain
your own system. Because of this, system administrators

have constantly been trying to fi nd ways to automate these

types of tasks to maximise their time. They started with

basic shell scripts, and then moved on to various scripting

languages. For a long time, Perl had been the language of

choice for developing these types of maintenance tools.

However, Python is now growing in popularity as the language

to use. It has reached the point where most Linux distributions

have a Python interpreter included in order to run system

scripts, so you shouldn’t have any excuse for not writing your

own scripts.

Because you will be doing a lot system level work, you

will have most need of a couple of key Python modules. The

fi rst module is “os”. This module provides the bulk of the

interfaces to interacting with the underlying system. The

usual fi rst step is to look at the environment your script is

running in to see what information might exist there to help

guide your script. The following code gives you a mapping

object where you can interact with the environment variables

active right now:

 import os
 os.environ

You can get a list of the available environment variables with

the function os.environs.keys(), and then access individual

variables with os.environs[key]. These environment variables

are used when you spawn a subprocess, as well. So you will

want to change values, like the PATH or the current working

directory, in order to run these subprocesses correctly. While

there is a putenv function that edits these values, it doesn’t

exist on all systems, so the most benefi cial way in the long

run to approach this is to edit the values directly within the

environs mapping.

Another category of tasks you may want to automate is when

working with fi les. Get the current working directory with:

 cwd = os.getcwd()

You can then get a list of the fi les in this directory with:

 os.listdir(cwd)

You can move around the fi lesystem with the function

os.chdir(new_path). Once you’ve found the fi le you are

interested in, you can open it with os.open() and open it for

reading, writing and/or appending. You can then read or write

to it with the functions os.read() and os.write(). Once you are all

done, you can close the fi le with os.close().

Above Python
scripts enable you
to instruct and
interact with your
operating system

Get the most out of Python in handling all of the day-to-day
upkeep that keeps your system healthy

Once you have your

scripts all written

up, you may want to

schedule them to

run automatically

without your

intervention. On

Unix systems,

you can have cron

run your script on

whatever schedule

is necessary. The

utility crontab -l lists

the current contents

of your cron fi le, and

crontab -e lets you

edit the scheduled

jobs that you want

cron to run.

Scheduling
with cron

Running subprocesses from Python
The underlying philosophy of Unix is to build small, specialised

programs that do one job extremely well. You then chain these

together to build more complex behaviours. There is no reason

why you shouldn’t use the same philosophy within your Python

scripts. There are several utility programs available to use with

very little work on your part. The older way of handling this was

through using functions like popen() and spawnl() from the

os module, but a better way of running other programs is by

using the subprocess module instead. You can then launch a

program, like ls, by using:

 import subprocess
 subprocess.run([‘ls’, ‘-l’])

This gives a long fi le listing for the current directory. The

function run() was introduced in Python 3.5 and is the

suggested way of handling this. If you have an older version,

or need more control, you can use the underlying Popen()

function instead. If you want to get the output, you can use:

 cmd_output = subprocess.run([‘ls’, ‘-l’],
stdout=subprocess.PIPE)

The variable “cmd_output” is a CompletedProcess object

that contains the return code and a string holding the stdout

output. It may not be the same way that you are used to, but the

methodology is essentially the same.

SYSTEM ADMINISTRATION:
BASH, PERL, PYTHON

OPERATING SYSTEM

CPU FILES/IO

24 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

With the content and the bulk of the computing hosted on
a server, a web application can better ensure a consistent
experience for the end user. The popular Django framework

provides a complete environment of plugins and works on the

DRY principle (Don’t Repeat Yourself). Because of this, you should

be able to build your web application quickly. Since Django is built

on Python, you should be able to install it with sudo pip install

Django. Depending on what you would like to achieve with your

app, you may need to install a database like MySQL or PostgreSQL

to store your application data. There are various Django utilities

available to automatically generate a starting point for your new

project’s code:

 django-admin startproject newsite

This command creates a file named “manage.py” and a

subdirectory named “newsite”. The file “manage.py” contains

several utility functions you can use to administer your new

application. The new subdirectory contains the files “__init__.

py”, “settings.py”, “urls.py” and “wsgi.py”. These files, and the

subdirectory they reside in, comprise a Python package that is

loaded when your website is started up. The core configuration

for your site can be found in the file “settings.py”. The URL

declarations, basically a table of contents for your site, are stored

in the file “urls.py”. The file “wsgi.py” contains an entry point for

WSGI-compatible web servers.

Once your application is done, it should be hosted on a properly

configured and hardened web server. But this is inconvenient if

you are in the process of developing your web application. To help

you out, Django has a web server built into the framework. You can

start it up by changing directory to the “newsite” project directory

and running this command:

 python manage.py runserver

This will start up a server listening to port 8000 on your local

machine. Because this built-in server is designed to be used for

development, it reloads your Python code for each request, so you

Above Python
interpreters work
with databases to
power a web server

Left The Model-
View-Controller
architecture is often
used for UIs

don’t need to restart the server to see your code changes. All of

these steps get you to a working project. You are now ready to start

developing your applications. Within the “newsite” subdirectory,

you need to type:

 python manage.py startapp newapp

This will create a new subdirectory named “newapp”, with the

files “models.py”, “tests.py” and “views.py”, among others. The

simplest possible view consists of the code:

from django.http import HttpResponse
def index(request):

return HttpResponse(“Hello world”)

This isn’t enough to make it available, however. You will also need

to create a URLconf for the view. If the file “urls.py” doesn’t exist

yet, create it and then add the code:

from django.conf.urls import url
from . Import views
 urlpatterns = [url(r‘̂ $’, views.index,

name=‘index’),]

Next, get the URL registered within your project with this code:

from django.conf.urls import include, url
from django.contrib import admin
urlpatterns = [url(r‘̂ newapp/’, include(‘newapp.urls’)),
 url(r‘̂ admin’, admin.site.urls),]

This needs to be put in the “urls.py” file for the main project. You

can now pull up your newly created application with the URL

http://localhost:8000/newapp/.

Web development
Python has several frameworks available for your web development tasks.
We will look at some of the more popular ones

When you start

developing your own

applications, you

may begin a descent

into dependency

hell. Several Python

packages depend

on other Python

packages. This is its

strength, but also its

weakness. Luckily,

you have virtualenv

available to help

tame this jungle.

You can create new

virtual environments

for each of your

projects. In this way,

you can be sure to

capture all of the

dependencies for

your own package.

Virtual
environments

USER

WEB SERVER

DATABASE
PYTHON

INTERPRETER

MODEL

USER

VIEW CONTROLLER

Manipulates

Sees

Updates

Uses

Raspberry Pi Tips, Tricks & Hacks 25

Tips | Tricks | Hacks

The last part for applications is usually the database. The

actual connection details to the database, like the username and

password, are contained in the file “settings.py”. This connection

information is used for all of the applications that exist within the

same project. Create the core database tables for your site with:

 python manage.py migrate

For your own applications, you can define the data model you

need within the file “models.py”. Once the data model is created,

you can add your application to the INSTALLED_APPS section

of the “settings.py” so that Django knows to include it in any

database activity. You initialise it with:

 python manage.py makemigrations newapp

Once created, apply these migrations to the database:

 python manage.py migrate

Any time you make changes to your model, you will need to run

the makemigrations and migrate steps again.

Once you have your application finished, you can make

the move to the final hosting server. Don’t forget to check the

available code within the Django framework before putting too

much work into developing your own.

Using the PyCharm IDE

Other Python
Frameworks
While Django is one of the most popular frameworks around

for doing web development, it is by no means the only one

around. There are several others available that may prove to

be a better fi t for particular problem domains. For example,

if you are looking for a really self-contained framework, you

could look at web2py. Everything you need to be able to have

a complete system, from databases to web servers to a

ticketing system, are included as part of the framework. It is

so self-contained that it can even run from a USB drive.

If you need even less of a framework, there are several

mini-frameworks that are available. For example, CherryPy

is a purely Pythonic multi-threaded web server that you

can embed within your own application. This is actually

the server included with TurboGears and web2py. A really

popular microframework is a project called fl ask. It includes

integrated unit testing support, jinja2 templating and RESTful

request dispatching.

One of the oldest frameworks around is zope, now up to

version 3. This latest version was renamed BlueBream. Zope

is fairly low-level, however. You may be more interested in

looking at some of the other frameworks that are built on

top of what is provided by zope. For example, pyramid is a

very fast, easy-to-use framework that focuses on the most

essential functions required by most web applications. To

this end, it provides templating, the serving of static content,

mapping of URLs to code, among other functions. It handles

this while providing tools for application security.

If you are looking for some ideas, there are several open

source projects that have been built using these frameworks,

from blogs and forums to ticketing systems. These projects

can provide some best-practices when you go to construct

your own application.

When you are in the

middle of developing

your application, you

may need to have

several different

terminal windows

open in order to

have a code editor

open, a monitor

on the server,

and potentially

somewhere to test

and monitor output.

If you are doing

this on your own

machine, this isn’t an

issue. But if you are

working remotely,

you should look into

using tmux. This

can provide a much

more robust terminal

environment for you

to work in.

Terminal
development
environments

To help you out, Django
has a web server built into
the framework

The Editor Pane The main editor
pane can be confi gured to match your own
style, or one of the other main editors, like
emacs. It handles syntax highlighting, and
even displays error locations in your scripts.

The Project Pane This pane is
the central location for your project. All of
your fi les and libraries are located here.
Right-clicking in the pane brings up a drop-
down menu where you can add new fi les or
libraries, run unit tests, or even start up a
debugger if you like.

The Status Bar You can get the full
details of the currently running system from
the web

26 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Python has become one of the key languages used in science.
There is a huge number of packages available to handle almost

any task that you may have and, importantly, Python knows

what it isn’t good at. To deal with this, Python has been designed

to easily incorporate code from C or FORTRAN. This way, you can

offl oad any heavy computations to more effi cient code.

The core package of most of the scientifi c code available

is numpy. One of the problems in Python is that the object-

oriented nature of the language is the source of its ineffi ciencies.

With no strict types, Python always needs to check parameters

on every operation. Numpy provides a new datatype, the array,

which helps solve some of these issues. Arrays can only hold

one type of object, and because Python knows this it can use

some optimisations to speed things up to almost what you can

get from writing your code directly in C or FORTRAN. The classic

example of the difference is the for loop. If you wanted to scale

a vector by some value, something like a*b, this would look like:

for elem in b:
 c.append(a * elem)

In numpy, this would look like:

a*b

So, not only is it faster, it is also written in a shorter, clearer

Above The numpy
package makes it
easy to visualise
your data

form. Along with the new datatype, numpy provides

overloaded forms of all of the operators that are of most

use, like multiplication or division. It also provides optimised

versions of several functions, like the trig functions, to

take advantage of this new datatype. The largest package

available, that is built on top of numpy, is scipy. Scipy provides

Computational science
Due to its wide array of packages, Python is fast becoming
the go-to language for computational science

Spyder, the IDE for scientists

IPYTHON CONSOLE
The console window lets you interact directly with the

underlying interpreter that will be used when you try and

run your code.

The Editor Pane This pane is where
you can open and edit your source fi les.
Above this pane are buttons to allow you
to simply run the code, or run it under a
debugger. Under the debugger, you can set
breakpoints and step through each line of
code individually.

IPYTHON CONSOLEIPYTHON CONSOLE
The console window lets you interact directly with the The console window lets you interact directly with the

underlying interpreter that will be used when you try and underlying interpreter that will be used when you try and

run your code.run your code.

IPython Console The console
window lets you interact directly with the
underlying interpreter that will be used
when you try and run your code.

Variable Explorer The variable
explorer pane lets you access all of the
data structures within the current Python
interpreter. You need to actually run your
code for anything to show up here.

Raspberry Pi Tips, Tricks & Hacks 27

Tips | Tricks | Hacks

Above The ability to
generate complex
plots is essential

Above Jupyter Notebook is a web application for creating and
sharing documents that contain live code and equations

sub-sections in several areas of science. Each of these sub-

sections need to be imported individually after importing the

main scipy package. For example, if you are doing work with

differential equations, you can use the “integrate” section to

solve them with code that looks like:

import scipy
import scipy.integrate
result = scipy.integrate.quad(lambda x: sin(x), 0,
4.5)

Differential equations crop up in almost every scientifi c

fi eld. You can do statistical analysis with the “stats” section.

Alternatively, if you want to do some signal processing, you

can use the “signal” section and the “fftpack” section. This

package is defi nitely the fi rst stop for anyone wanting to do

any scientifi c processing.

Once you have collected your data, you usually need to

graph it, in order to get a visual impression of patterns within

it. The primary package you can use for this is matplotlib. If

you have ever used the graphics package in R before, the core

design of matplotlib will be familiar as it has borrowed quite a

few ideas. There are two categories of functions for graphing:

low-level and high-level. High-level functions try to take care

of as many of the menial tasks as possible, like creating a plot

window, drawing axes, selecting a coordinate system, etc.

The low-level functions give you control over almost every

part of a plot, from drawing individual pixels to controlling

every aspect of the plot window. It also borrowed the idea of

drawing graphs into a memory-based window. This means it

can draw graphs while running on a cluster.

Interactive science
with jupyter
For a lot of scientifi c problems, you need to play with your data in

an interactive way. The original way you would do this was to use

the IPython web notebook. This project has since been renamed

Jupyter. For those who have used a program like Mathematica

or Maple, the interface should seem very familiar. Jupyter starts

a server process, by default on port 8888, and then will open a

web browser where you can open a worksheet. Like most other

programs of this type, the entries run in chronological order,

not in the order that they happen on the worksheet. This can

be a bit confusing at fi rst, but it means that if you go to edit an

earlier entry, all of the following entries need to be re-executed

manually in order to propagate that change through the rest of

the computations.

Jupyter will correctly print mathematical expressions

within the produced web page, as it supports the appropriate

formatting. You can also mix documentation blocks and code

blocks within the same page. This means that you can use it to

produce very powerful educational material, where students

can read about the techniques, and then actually run it and see

it in action. By default, Jupyter will also embed matplotlib plots

within the same worksheet as a results section, so you can see

a graph of some data along with the code that generated it.

This is huge in the growing need for reproducible science. You

can always go back and see how any analysis was done and

reproduce any result.

Sometimes you

need as much speed

as you are capable

of pushing on your

hardware. In these

cases, you always

have the option of

using Cython. This

lets you take C code

from some other

project, which has

probably already

been optimised,

and use it within

your own Python

program. In scientifi c

programming, you

are likely to have

access to code that

has been worked

on for decades

and is highly

specialised. There is

no need to redo the

development effort

that has gone into it.

The Need
for Speed

If you need to do symbolic maths, you may be more used

to using something more like Mathematica or Maple. Luckily,

you have sympy, which can be used to do many of the same

things. You can use Python to do symbolic calculus, or to

solve algebraic equations. The one weird part of sympy is that

you need to use the symbols() function to tell sympy what

variables are valid to be considered in your equations. You

can then get started with doing manipulations using these

registered variables.

You may have large amounts of data that you need to work

with and analyse. If so, you can use the pandas package to

help deal with that. Pandas has support for several different

fi le formats, like CSV fi les, Excel spreadsheets or HDF5.

You can merge and join datasets, or do slicing or subsetting.

In order to get the best performance out of the code, the

heaviest lifting is done by Cython code that incorporates

functions written in C. Quite a few ideas on how to manipulate

your data were borrowed from how things are done in R.

You now have no reason not to start using Python for your

scientifi c work. You should be able to use it for almost any

problem that comes up!

Jupyter will correctly print
mathematical expressions
within the produced web page

28 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

ROS – Robot Operating System
While you could simply write some code that runs on a standard

computer and a standard Linux distribution, this is usually not

optimal when trying to handle all of the data processing that a

robot needs when dealing with events in real-time. When you

reach this point, you may need to look at a dedicated operating

system – the Robot Operating System (ROS). ROS is designed

to provide the same type of interface between running code the

computer hardware it is running on, with the lowest possible

overhead. One of the really powerful features of ROS is that

it is designed to facilitate communication between different

processes running on the computer, or potentially over multiple

computers connected over some type of network. Instead of

each process being a silo that is protected from all other process,

ROS is more of a graph of processes with messages being passed

between them.

Because ROS is a complete operating system, rather than a

library, it is wrong to think that you can use it in your Python code.

It is better to think that you can write Python code that can be used

in ROS. The fundamental idea is to be as agnostic as possible;

interfaces to your code should be clean and not particularly care

where they are running or who is talking to them. Then, it can be

used within the graph of processes running within ROS. There

are standard libraries available that allow you to do coordinate

transformations, useful for fi guring out where sensors or limbs

are in space. There is a library available for creating preemptible

tasks for data processing, and another for creating and managing

the types of messages that can be handed around the various

processes. For extremely time-sensitive tasks, there is a plugin

library that allows you to write a C++ plugin that can be loaded

within ROS packages.

Robotics is the most direct way that your code can interact
with the world. It can read actual sensor information and

move real actuators and get real work done.

The fi rst thing your robot needs is the ability to sense

the world around it. The one sense that we as humans feel

is most useful is sight. With web cameras being so cheap

and easy to connect to hardware, vision is easy to give to

your robot. The real problem is how to interpret this data.

Luckily, you can use the OpenCV project to do just that. It is

a vision package that can provide simple image gathering

and processing, to extremely complex functions like face

recognition and extraction of 3D objects. You can identify and

track objects moving through your fi eld of view. If you want,

you can also use OpenCV to give you robot some reasoning

capabilities, too. OpenCV includes a set of functions for

machine learning, where you can do statistical classifi cation

or data clustering, and use it to feed decision trees or even

neural networks.

Another important sense that you may want to use is sound.

The Jasper project is one that is developing a complete voice

control system. This project would give you the structure you

need to give your robot the ability to listen for and respond

to your verbal commands. The project has gotten to the

point where you can give it a command and the voice

recognition software can translate this into text. You

then need to build a mapping of which pieces of text

correspond to which commands to execute.

There are lots of other sensors you can use, but this

begins to leave the realm of store-bought hardware.

Most other sensors, like temperature, pressure, orientation

or location, need specialised hardware that needs to be

interfaced to the computer brain for your robot. This means it

Robotics and electronics
See your code come to life in the real world around you with
physical applications of robot technology

While we haven’t

discussed what kind

of computer to use

for your robotics

project, you should

consider the famous

Raspberry Pi. This

tiny computer should

be small enough to fi t

into almost any robot

structure that you

might be building.

Since it is already

running Linux and

Python, you should

be able to simply

copy your code

development work to

the Pi. It also includes

its own IO bus so that

you can have it read

its own sensors.

Raspberry Pi

In contrast to the

Raspberry Pi, which

runs a full OS from

its SD card, the

Arduino boards are

microcontrollers

rather than complete

computers. Instead

of running an OS, the

Arduino platform

executes code that

is interpreted by its

fi rmware. It is mainly

used to interface

with hardware such

as motors, servos,

sensors, etc.

Arduino

Raspberry Pi Tips, Tricks & Hacks 29

Tips | Tricks | Hacks

is time to get your soldering iron out. As for reading the data in,

this is most often done over a basic serial connection. You can

then use the pySerial module to connect to the serial port and

read data off the connection. You can use:

import serial

… to load the module and start talking to your sensor. The

problem is that this is a very low-level way to communicate. You,

as the programmer, are responsible for all of the details. This

includes communication speed, byte size, fl ow control; basically

everything. So this will defi nitely be an area of your code where

you should plan on spending some debugging time.

Now that you have all of this data coming in, what will you

do with it? You need to be able to move actuators out in the

world and have real effects. This could be motors for wheels

or tracks, levers to shift objects, or potentially complete

limbs, like arms or legs. While you could try and drive these

types of electronic devices directly from the output ports of

your computer, there usually isn’t enough current available to

provide the power needed. So, you need some off-board brains

capable of handling the supplying of power to these devices.

One of the most popular candidates for this task is the

Arduino. Luckily, the Arduino is designed to connect to the

serial port of your computer, so you can simply use pySerial

to talk to it. You can send commands to code that you have

written and uploaded to the Arduino to handle the actual

manipulations of the various actuators. The Arduino can talk

Use arduino for lower-level work

For robotics work,

you may need to run

some code truly in

parallel, on multiple

CPUs. Python

currently has the GIL

(Global Interpreter

Lock), which

means that there

is a fundamental

bottleneck built into

the interpreter. One

way around this is to

actually run multiple

Python interpreters,

one for each thread

of execution. The

other option is to

move from CPython

to either Jython

or IronPython, as

neither has a GIL.

Bypassing
the GILback, however. This means that you can read feedback data

to see what effect your movements have had. Did you end

up turning your wheels as far as you wanted to? This means

that you could also use the Arduino as an interface between

your sensors and the computer, thus simplifying your Python

code even more. There are loads of add-on modules available,

too, which might be able to provide the sensing capabilities

you need right out of the box. There are also several models

of Arduino, so you may be able to fi nd a specialised one that

best fi ts your requirements.

Now that you have all of this data coming in and the ability

to act it out in the real world, the last step is giving your robot

some brains. This is where the state of the art does not live

up to the fantasy of R2-D2 or C-3PO. Most of your actual

innovative coding work will likely take place in this section of

the robot. The general term for this is artifi cial intelligence.

There are several projects currently underway that you

could use as a starting point to giving your robot some real

reasoning capability, like SimpleAI or PyBrain.

Sensors like
temperature
need specialised
hardware

The Main Editor You have access to
a large number of libraries, and support for
a large number of versions of the Arduino
boards. The code is essentially C, so Python
programmers shouldn’t be too far out of
their depth.

Output Window This pane contains
output from various tasks. This might be
compiling the source code, or uploading
it to the Arduino board being used in your
project.

The Status Bar YThe status bar
reminds you which type of board you are
currently programming for, as well as which
port the Arduino IDE thinks it is on. Always
verify this before trying to upload your
control program to the board in question.

30 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Explore Pixel, the new offi cial desktop
environment for the Raspberry Pi

Get the new Pixel desktop

Pixel (Pi Improved Xwindows Environment,
Lightweight), is the latest iteration of the
Raspbian desktop. The major changes are

apparent the fi rst time you boot up – the multitude

of boot messages has been replaced with a simple

splash screen with the release number.

There are now 16 stunning desktop background

images to choose from thanks to Pi Foundation

developer Greg Annandale. The icons on the fi le

manager, task bar and menu now have a crisp,

professional appearance. Menus are also cleaner

and more readable as application icons no longer

appear by default.

The rather clunky windows we formerly knew in

Raspbian have now been replaced with rounded

corners and a modifi ed title bar. The infi nality

patchset actually also makes for much cleaner

font rendering.

Beneath the hood, RealVNC Server is now

bundled to allow you to easily select VNC from

the interfaces menu, then connect via a viewer.

There’s also a provisional release of Chromium for

the Pi, which in combination with the h264ify plugin

makes use of the Pi’s hardware to stream video.

01 Choose your install method
There are several ways to install Raspbian

with Pixel. If you have Raspbian with NOOBS, you

can restart your Pi by holding Shift and choose

to reinstall. This will upgrade you to the latest

version using Pixel but will also wipe your existing

installation. Alternatively you can download the latest

Raspbian Image from https://www.raspberrypi.org/

downloads/raspbian/ and follow the easy installation

What you’ll need
 Raspberry Pi
(Ideally a Pi 2 or 3 if you want to use

Chromium for streaming video)

 If installing from Raspbian

from scratch, an 8GB Micro

SD card

 Access to a computer for

connecting via SSH and/or

to install Raspbian Jessie

with Pixel

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 31

guide at https://www.raspberrypi.org/documentation/

installation/installing-images/README.md. If you use either of

these methods, skip ahead to Step 5.

02 Manual upgrade to Raspbian with Pixel
If your Raspberry Pi has an existing installation of

Raspbian Jessie, you can upgrade to the latest version of

Raspbian with Pixel by opening Terminal or connecting via

SSH and running the commands:

 sudo apt-get update
 sudo apt-get dist-upgrade

The upgrade process will take some time. You’ll see a

message about the plymouth I/O multiplexing framework;

press Q to dismiss this and proceed.

03 Install Chromium
The latest version of Raspbian includes an initial

release of Chromium. As we’re performing a manual upgrade,

you can install this with the command:

 sudo apt-get install -y rpi-chromium-mods

Chromium comes bundled with the previously mentioned

h264ify extension, which forces YouTube to use the Pi’s hardware

acceleration when streaming videos. The awesome adblocker

uBlock Origin is also bundled to strip out resource-hungry adverts.

Some of the newly

designed icons aren’t

immediately visible

as none of the default

applications belong

in the Engineering

or Education

categories. If

you’re curious

about this, head

over to /usr/share/

icons/PiX to take a

peek at the icons.

Alternatively click on

Menu>Preferences>

Add/Remove

software to see the

categories and their

respective sleek

icons. It is possible

to modify the icons

for individual apps.

Check Step 15 for

more information.

Invisible
icons04 Install SenseHAT Emulator

This step is optional, but is included as the SenseHAT

emulator is also included with the latest version of Raspbian. The

SenseHAT is an add-on board for the Raspberry Pi with a range of

sensors from a thermometer to a gyroscope. The emulator allows

developers to test code for devices without actually owning a

SenseHAT itself. For more information see www.raspberrypi.org/

blog/desktop-sense-hat-emulator/

Run this command to install all necessary fi les:

 sudo apt-get install -y python-sense-emu python3-
sense-emu python-sense-emu-doc

05 Load Pixel Desktop
Reboot the Pi to see your new, shiny Pixel Desktop. You

may see a message stating that your previous confi guration

fi les have been overwritten. Click OK to dismiss this. At this stage

you might also want to change the default wallpaper. Right click

anywhere on the desktop and click Desktop Preferences. Click

the Wallpaper menu to choose from any of the stunning options.

Our current favourite is Mountain.

06 Examine your interfaces
Disable both Bluetooth and Wi-Fi from within the desktop

environment with the click of a button. Simply click on the relevant

icon and turn it off. Head over to Menu>Preferences>Raspberry Pi

Configuration>Interfaces and click Enabled under VNC. The VNC

icon will appear at the top-right of the desktop. Click this to view

your Pi’s private IP address for VNC clients.

07 Import old bookmarks into Chromium
You can open Chromium by clicking the web browser

icon at the top-left of the screen. If you want to import your

bookmarks from Epiphany, open Terminal on the Pi and run:

 epiphany-browser.

32 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Click the Settings gear icon on the top-right and choose Edit

Bookmarks. On the window that opens you’ll have the option to

export your bookmarks to HTML format. Close Epiphany and

choose the blue link Import Bookmarks in Chromium to add

them there.

08 Change the
Appearance Settings

While the default options make for a

stunning desktop, you may wish to

perform some small tweaks at this

stage, particularly if this is a new

install of Raspbian. In the main menu,

head over to Preferences>Appearance

Settings. If you’re used to a menu bar

at the bottom of the screen, change

the Position setting to Bottom. You

can also change the size of the bar to

medium or small.

09 Test SenseHAT Emulator
If you installed the SenseHAT Emulator previously, you

can launch it from the Programming menu in Applications. The

Emulator comes bundled with around a dozen example scripts

to get you started. Simply click the File menu at the top-left of

the emulator window, then Open Example. There are beginner,

intermediate and advanced projects. If your interest has been

piqued, SenseHATs are currently available online from the Pi

Hut for £30. See https://thepihut.com/products/raspberry-

pi-sense-hat-astro-pi.

10 Enable login screen
Now the Raspberry Pi has a rich desktop

environment and modern web browser, you may wish to

use it for a work or home computer. To make the Pi require

a password on startup, open Terminal on or connect via SSH

and run the command:

 sudo nano /etc/lightdm/lightdm.conf

Scroll down to the line autologin-user=pi and put a hash (#)

at the start. Press Ctrl+X, then Y, then return to save and

exit. Remember the default password is ‘raspberry’.

Raspberry Pi Tips, Tricks & Hacks 33

11 Add new users
If you followed the previous step, you may want to

add extra user accounts for your family or colleagues. First

open Terminal on the Pi or connect via SSH and then run the

following command:

 passwd.

This will allow you to change the default password

‘raspberry’ to something more meaningful. Once you have

done this add more users with the command:

 sudo adduser
(e.g sudo adduser bob)

Now enter the password for the new user twice when

prompted to create the account.

12 Practise resizing windows
One blessing of the old Raspbian desktop is that

window frames were quite thick whereas Pixel includes much

slicker, thinner windows so it can be tricky at fi rst to resize

them. Fortunately in the latest version of Raspbian the grab

handles now extend outside the window, so even if the mouse

is just outside the frame, you’ll see the cursor change.

13 Confi gure splash screen
Pixel’s sedate splash screen on boot may not sit well

with some people’s principles; the previous text boot is also

very useful for detecting errors. If you wish to go back to the

old style boot screen, open Terminal or connect via SSH and

run the command:

 sudo nano /boot/cmdline.txt

Use the right arrow to fi nd the text ‘quiet splash’ and delete

it. Use Ctrl+X, then Y, then return to save and exit.

14 Add temperature/voltage monitors
In previous versions of Raspbian, if the Pi was

overheating or underpowered, you may have noticed crude

yellow and red squares appearing in the corner of the

screen. These have now been replaced with pictures of a

thermometer and lightning bolt respectively. Right-click

the task bar and Add Panel Items to display the system

temperature and voltage if you wish.

15 Explore your icons
The icons have been painstakingly redrawn for

Pixel by Sam Alder and Alex Carter, who also illustrate the

graphics of the offi cial Raspberry Pi website. You can fi nd

all the system icons in /usr/share/icons/PiX. The icons are

very professional and easy on the eye, however if you wish to

replace any of them, make sure to try and use a .PNG image

and to give it the exact same name as the image you’re

replacing, for example launch.png.

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 33

34 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Multitasking with your Pi
Learn how to add multitasking to your own Python code
 – perfect for those with multiple projects on the go

 The majority of programmers will learn

single-threaded programming as their

first computational model. The basic

idea is that instructions for the computer

are processed sequentially, one after the

other. This works well enough in most

situations, but you will reach a point

where you need to start multitasking.

The classical situation for writing multi-

threaded applications is to have them

run on a multi-processor machine of

some persuasion. In these cases, you

would have some heavy, compute-bound

process running on each processor.

Since your Raspberry Pi is not a huge

16-core desktop machine, you might be

under the assumption that you can’t take

advantage of using multiple threads of

execution. This isn’t true, though.

There are lots of problems that map

naturally to the multiple thread model.

You may also have IO operations that

take a relatively large amount of time to

complete. In these cases, it is well worth

your programming effort to break your

problem down into a multi-threaded

model. Since Python is the language of

choice for the Raspberry Pi, we will look

at how you can add threads to your own

Python code. For those of you who have

looked into multi-threaded programming

in Python, you may have run into the GIL

(Global Interpreter Lock) before. This

lock means that only one thread can

actually be running at a time, so you

don’t get true parallel processing. But

on the Raspberry Pi, this is okay. We just

want to use a more natural programming

paradigm for certain problems where it

makes sense.

The first bit of code we need is to

import the correct module. For this

article, we will be using the threading

module. Once it is imported, you have

access to all of the functions and objects

that you would need to write your code.

The first step is to create a new thread

object with the constructor:

 t = threading.Thread(target=my_
func)

The Thread object takes some function

that you have created, my_func in the

above example, as the target code that

needs to be run. When the thread object

has finished its initialisation, it is alive

but not running. You need to explicitly

call the new thread’s start() method. This

will begin running the code within the

function handed to the thread.

You can check to verify that this

thread is alive and active by calling its

is_alive() method. Normally, this new

thread will run until the function exits

normally. The other way a thread can exit

is if an unhandled exception is raised.

Depending on your experience of parallel

programs, you may already have some

ideas on what types of code you want

to write. For example, in MPI programs,

you typically have the same overall code

running in multiple threads of execution.

You use the thread’s ID and a series of if

or case statements to have each thread

execute a different section of the code.

To do something similar, you can use

something like:

 def my_func():
 id = threading.get_ident()
 if (id == 1):
 do_something()
 thread1 = threading.
Thread(target=my_func)

 thread1.start()

This code works in Python 3, but the get_

ident() function doesn’t exist in Python 2.

Threading is one of those modules that is

a moving target when moving from one

version of Python to another, so always

check the documentation for the version

of Python your are coding for.

Another common task in parallel

programming is to farm out time-

intensive IO into separate threads. This

way, your main program can continue

on with the core work and all of the

computing resources are kept as busy

as possible. But how do you figure out

if the child thread is done yet or not?

You can use the is_alive() function

mentioned above, but what if you can’t

continue without the results from the

child thread? In these cases, you can

It’s the official

language of the

Raspberry Pi.

Read the docs at

python,org/doc.

Why
Python?

use the join() method of the thread object

you are waiting on. This method blocks

until the thread in question returns. You

can include an optional parameter to

have the method time-out after some

number of seconds. This allows you to not

get trapped into a thread that will never

return due to some error or code bug.

Now that we have more than one thread

of execution happening at the same

time, we have a new set of issues to start

worrying about. The first is accessing

global data elements. What might happen

if you have two different threads that want

to read, or even worse write, to the same

variable in global memory? You can have

situations where changes to the value of

variables can get out of sync with what you

were expecting them to be.

These types of issues are called

race conditions, because the different

threads are racing with each other to see

in what order their updates to variables

will happen. There are two solutions

to this type of problem. The first is to

control access to these global variables

and only allow one thread at a time to be

able to work with them. The generic term

describing this control is to use a mutex

to control this access. A mutex is an

object that a thread needs to lock before

working with the associated variables. In

the Python threading module, this object

is called a lock. The first step is to create a

new Lock object with:

 lock = threading.Lock()

This new lock is created in an unlocked

state, ready to be used. The thread

interested in using it must call the

acquire() method for the lock. If the lock

is currently available then it changes

state to the locked state and your thread

can run the code that is meant to be

protected. If the lock is currently in a

locked state, then your thread will sit in

a blocked state, waiting for the lock to

become free. Once you are done with

the protected code, you need to call the

release() method to free the lock and

make it available for the next thread. As

an example, you could control a variable

Tips | Tricks | Hacks

What if you need to actually have truly parallel code,

that has the ability to run on multiple cores? Because

Python has the GIL, you need to move away from

using threads and go to using separate processes to

handle the different tasks. Luckily, Python includes

a multiprocessing module that provides the process

equivalent to the threading module. As with the

threading module, you create a new process object

and hand in a target function to be run. You then

need to call the start() method to get it running. With

threads, sharing data is trivial because memory is

global and everybody can see everything.

However, different processes are in different

memory scopes. In order to share data, we need to

explicitly set up some form of communications. You

can create a queue object where you can transfer

objects. Processes can use the put() method to dump

objects on the queue, and other proceses can use the

get() method to pull objects off. If you want a bit more

control over who is talking to who, you can use pipes

to create a two-way communication channel between

two processes.

When you use pipes and queues, you need to hand

them in as arguments to your target function. The

other way you can share information is by creating

a section of shared memory. You can create a single

variable sharelocation with the Value object. If you

have a number of variables you need to pass, you

can put them in an Array object. As with pipes and

queues, you will need to pass them in as parameters

to your target function. When you need to wait for the

results from a process, you can use the join() method

to get the main process to block until the sub-process

fi nally fi nishes.

The processing module also includes the idea of

a process pool that is different from the threading

module. With a pool, you can pre-create a number of

processes that can be used in a map function. This

kind of construct is useful if you are applying the

same function to a number of different input values.

For people who are using the concepts of mapping

or applying functions from R, or Hadoop, this might

be a bit more of an intuitive model to use in your

Python code.

Processes
Or threads?

It is worth the effort to
break your problem down
into a multi-threaded model

containing the sum of a series of results

with code like:

 lock.acquire()
 sum_var += curr_val
 lock.release()

This can lead to another common issue in

parallel programs: deadlocks. These issues

occur when you have multiple locks that are

associated with different global variables.

Say you have the variables A and B, and

the associated locks lockA and lockB. If

thread 1 tries to get lockA then lockB, while

thread 2 tries to get lockB then lockA, you

could have the situation where they each

get their first requested lock, and then wait

forever for the second requested lock.

To avoid this type of bug, code your

program very carefully. Unfortunately,

messy code can always creep in. You can

try and catch this kind of bad behaviour by

including the optional timeout parameter

when you call the acquire() method. This

tells the lock to only try and get the lock for

some number of seconds. If the timeout is

reached, the acquire method returns. You

can tell whether or not it was successful

by checking the returned value. If it was

successful, acquire will return True.

Otherwise, it will return False.

The second way you can deal with

data access is by moving any variables

that you can to within the local scope of

the individual threads. The essential idea

is that each thread would have its own

local version of any required variables

that nobody else can see. This is done by

creating a local object. You can then add

attributes to this local object and use them

as local variables. Within the function

being run by your thread, you would have

code that looks like:

 my_local = threading.local()

 my_local.x = 42

The last topic we will look at is

synchronising your threads so that they

can work together effectively. There will

be times when a number of threads will

need to talk to each other after working

on their separate parts of a particular

problem. The only way they can share

their results is if they have all finished

calculating their individual results. You

can solve this problem by using a barrier,

which each thread will stop at until all

of the other threads have reached it.

In Python 3, there is a barrier object

that can be created for some number

of threads. It will provide a point where

threads will pause when they call the

barrier’s wait() method. Because you

need to explicitly tell the barrier object

how many threads will be taking part in

the barrier, this is another area where you

can have a bug. If you create fi ve threads

but create a barrier for ten threads, it

will never reach the point where all of

the expected threads have reached the

barrier. The other synchronisation tool is

the timer object. A timer is a subclass of

the thread class, and so takes a function

to run after some amount of time has

passed. As with a thread, you need to call

the timer’s start() method in order to start

the countdown to when the function gets

executed. A new method, cancel(), allows

you to stop the countdown of the timer if it

hasn’t reached zero yet.

You should now be able to have your

code running even more effi ciently by

farming out any time intensive parts

to other threads of execution. In this

way, the main part of your program

can remain as reactive as possible to

interaction with the end user and you

can keep all parts of your Raspberry Pi

as busy as possible.

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 35

Tips | Tricks | Hacks

Keep an eye on your little one while they
sleep, thanks to your Raspberry Pi!

Get alerts with the
Raspberry Pi baby monitor

While you’re settling down to enjoy your latest boxset,
there’s always that nagging feeling at the back of your mind
– is the baby asleep, or crying down the house? Surround

sound tends to get in the way, which means we need to rely on

baby monitors.

While audio monitors are useful, the trend these days is

more towards video baby monitors, in particular those that

display footage on an app or by opening an IP address in a

mobile browser. Throw in some motion detection and alert

software, and you’ve got an incredibly useful tool – which,

you won’t be surprised to learn, the Raspberry Pi can do for a

fraction of the cost.

All you’ll need is a Raspberry Pi (the newer the better), and

a USB webcam or the PiCam (the NoIR infrared version is

even more suited to nighttime use), and a device to view the

streamed footage on. You now don’t need to be worried about

baby again – just check your phone to see what they’re up to!

01 Survey the bedroom
Before you start installing and confi guring your Pi,

head to the baby’s bedroom and take a look around. Where

will you be placing the Raspberry Pi? Is it within reach of a

power source? Do you need to connect an Ethernet cable, or

is the wireless signal strong enough? It’s vital at this stage to

spend the necessary time planning the Pi’s position in relation

to power sources and network connectivity.

02 Enable the camera
If you’re using the PiCam, this will be disabled by default.

You can enable this in the raspi-config tool. This can be accessed

in the GUI by opening Menu > Preferences > Raspberry Pi

Configuration, where you should select the Interfaces tab and

switch Camera to Enabled.

Alternatively, run sudo raspi-config and choose option 6, Enable

Camera. For USB webcams, use:

 sudo apt-get install fswebcam

And test with:

What you’ll need
 Wireshark (www.wireshark.

org)

 PiCam module or USB

webcam

36 Raspberry Pi Tips, Tricks & Hacks

Raspberry Pi Tips, Tricks & Hacks 37

Tips | Tricks | Hacks

03 Test the camera
You don’t want to set this project up to fi nd that the

camera doesn’t actually work. Whether you’re using a USB

webcam or the PiCam, you’ll need to run a command to test

the camera.

To confi rm, use the GUI to browse to /home/pi and view the

image.jpg fi le. This is preferable to checking in the command

line, as you can ensure the image is not corrupt.

04 Install motion
The motion capture software, motion, can be installed

after an update and upgrade of the Raspbian OS.

 sudo apt-get update
 sudo apt-get upgrade
 sudo apt-get install motion

Older versions of motion will not start automatically, and

display the “Not starting motion daemon” error message.

To avoid this, you need to make sure you run the update and

upgrade commands. If you’re using the PiCam module, you’ll

also need a driver.

05 Activate PiCam driver
To activate the PiCam driver, you need to enter the

following command:

 sudo modprobe bcm2835-v4l2

This enables the PiCam to communicate with third party apps,

such as motion. However, you’ll need to invoke the driver every

time you reboot, unless you add it to rc.local. Open the fi le

in nano:

 sudo nano /etc/rc.local

Find an empty line before exit =“0” and enter:

 modprobe bcm2835-v4l2

Then CTRL+X to exit, and Y to save.

Raspberry Pi projects

that rely on a camera

can usually work

with a standard

USB camera if you

don’t own a PiCam.

However, the Pi’s own

camera will work

without much trouble

– conversely, you

may have diffi culty

with a USB webcam

if the drivers aren’t

available. It really

depends on the

project. The PiCam

isn’t the easiest

device to position,

whereas you’ll enjoy

more positioning

fl exibility with a

USB webcam with a

long cable.

Which
camera?

06 Auto-start motion
Begin by opening the motion confi guration fi le.

 sudo nano /etc/default/motion

Here, we need to instruct the software to start each time the

Raspberry Pi boots. Find the value “daemon off” and change

it to read:

 daemon on

Hit CTRL+X to exit, tapping Y to confi rm you wish to save the

fi le, and Enter to continue.

Next, confi rm the motion daemon works on a reboot by

restarting your Pi:

 sudo reboot

07 Confi gure motion
The next step is to confi gure the motion software.

This means setting the frame-rate (how often an image is

captured), image dimensions (larger images will take up

more resources, thereby slowing the monitor) and setting the

video format.

How you confi gure motion really depends on which

model of Raspberry Pi you will be using for this project. First

generation devices will still handle low-resolution images

comfortably; for a hi-res feed, you should probably use the

Raspberry Pi 3.

08 Edit the config file
To begin configuration, open motion.conf:

 sudo nano /etc/motion/motion.conf

Use the CTRL+W shortcut to open search, and find each of the

following conditions, adding the values as specified:

38 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

As with any project

like this, you should

forget about hooking

up a keyboard

and mouse and

rely on SSH and/

or VNC. SSH is

now enabled by

default in Raspbian

(check raspi-config

otherwise) and

makes connecting

to the Pi’s command

line very simple.

Meanwhile, VNC

is one of several

ways to display

the Raspberry Pi

desktop on your

main PC. It can be

set up by installing

tightvncserver on

your Pi, and running

TightVNC Viewer on

the main computer.

SSH
and VNC

 daemon on
 framerate 2
 width 640
 height 480
 ffmpeg_video_codec mpeg4
 stream_localhost off
 control_localhost off

If you’re recording in a darkened room, you might wish to adjust the

brightness and contrast values.

With the changes made, hit CTRL+X to exit, confirming with Y

and Enter.

09 Assign ownership to target directory
You may find that the camera stops streaming images

after a short time. Though this is very annoying, this is merely a

permissions issue, one that causes a few images to appear on

your screen before the whole thing times out. You can overcome

this with:

 sudo chown motion: /var/lib/motion

You can also set a custom file path in motion.conf. Look for target_

dir and change as appropriate. Remember to save the file and

restart motion when you’re done.

10 Start and test your baby monitor
We now almost have a fully working baby monitor. At this

stage, all that is left to get the baby monitor up and running is to

launch motion:

 sudo service motion start

You should be able to browse to the feed by entering the IP

address of your Raspberry Pi in a mobile browser. This would

typically be something like

 192.168.0.10:8081

Check this on multiple devices on your home network to confirm

that it works.

11 Adjust motion detection
It’s unlikely that you will find that motion detection works

right away. In order to adjust this for the environment you have the

Pi baby monitor set up in, open :

 sudo nano /etc/motion/motion.conf

and use CTRL+W to search for “Motion Detection Settings”.

Here you’ll find various conditions with values that you can

adjust, such as threshold and area_detect_value. These will

require some patient tweaking for the best results.

12 Make motion beep
To aid in tweaking the detection, you can enable a beep to

sound when movement is captured. As a project like this needs

some calibration to get the best results, this is a useful feature.

Again, this setting is found in motion.conf. Search for “quiet on”

and change the setting to read:

 quiet off

Remember to undo this when you’re happy with the movement

capture, as it may disturb the little one!

13 Adjust image quality
While you can alter dimensions of the images captured

by the PiCam board, it’s important to be careful with the figures

you enter in motion.conf. For instance, a dimension of 133x255

pixels probably won’t work. Dimensions need to be multiples of

4. For larger options, look at 1280x800 or 1920x1080.

Not only will larger images impact bandwidth, they’ll make

the resulting AVI file larger.

Tips | Tricks | Hacks

Different USB

webcams have

their own power

requirements.

Some will run off

the Raspberry

Pi’s own power,

others will require

a power source,

best provided via a

powered USB hub. If

you’re positioning the

Raspberry Pi baby

monitor away from

a power source, a

rechargeable battery

pack should be able

to provide enough

juice for both devices

for around 12 hours.

USB
webcam
and power

14 Check saved images
To confirm the quality of the images captured by

the Raspberry Pi baby monitor, boot into the GUI (or install

tightvncserver and remote connect) and browse to /var/lib/motion

to see how they are turning out. This should give you the info you

need to adjust the dimensions of the captured images.

15 Troubleshoot camera connectivity
There’s no guarantee that motion will work straight away

– if no images are found, or you cannot connect to the stream (or

both) it’s worth running:

 tail -f /var/log/syslog

and...

dmesg | tail

This will display any issues that the process is currently

having, which is intended to (and hopefully will!) help you

diagnose and resolve any problems. Most issues will be

driver-related, so keep this in mind with USB webcams. Press

CTRL+Z to end.

16 Name your images
Images collected by the motion software can be

confi gured with a specifi c naming convention, based on date

and time.

You can fi nd these listed under “target base directory” in

motion.conf. For instance, you can specify a folder for new

images, based on date:

 %Y_%m_%d/%v-%Y%m%d%H%M%S-%ql

Note the “/” – both directory and images will be named according

to date, with images also labelled with the timestamp.

17 Go beyond your home network
Wouldn’t it be great to monitor your child’s sleep from

your favourite restaurant? You can do this by installing the

No-IP software on your Raspberry Pi.

This software enables you to get around the fact that your

ISP won’t give you a dedicated IP address without paying a

hefty premium, by installing a client app that enables you to

view the baby monitor outside your home network.

Raspberry Pi Tips, Tricks & Hacks 39

40 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Forget Raspbian – install the quintessentially
British operating system onto your Raspberry Pi
and take it to the next level!

Run RISC OS on
your Raspberry Pi

You’re happy using Raspbian to get the most from your
Raspberry Pi. You might have fl irted with the idea of Ubuntu

or Arch Linux, but never seen the point. After all, when it

comes to maximising what you can do with the Pi, the offi cial

distro has everything you need, right?

But, what about trying a non-Linux operating system? The

Cambridge-developed RISC OS (RISC being an acronym for

‘reduced instruction set computing’) was the fi rst operating

system for ARM processors, and although older British

readers will recall it from the classic Acorn Archimedes

computers, RISC OS remains relevant and easy to get

started with. Just make sure you’ve got a monitor, mouse and

keyboard to hand before you boot it up!

01 Download RISC OS
Get started by downloading the correct version of

RISC OS (https://www.riscosopen.org/content/downloads/

raspberry-pi), and save the 99.9Mb ZIP fi le to your computer.

Several versions are available, including an ultra light Pico

version, but we’d recommend getting started with the fi rst

option, the SD Card image.

02 Unzip the download
Before writing to SD, you’ll need to unzip the RISC

OS disk image. In the Terminal, use the unzip command,

specifying the downloaded fi le’s directory path and fi lename:

Above Choose the version of RISC OS to suit your needs

Above Before you can write the disk image, it must be extracted from
the archive

Whether you
remember BBC
BASIC or it’s
completely new to
you, you’ll have it at
your fi ngertips in
RISC OS. To open a
command line, click
Ctrl+F12, then type
BASIC and enter.
You are then
ready to enter a
basic program:

 10 WHILE TRUE
 20 PRINT
“Hello world!”
 30 ENDWHILE
 RUN

Esc will stop this
routine. Dedicated
programming
editors are available
for BBC BASIC,
although you can
develop code with
WIMP and C too.

Get started
with BASIC

What you’ll need
 RISC OS

http://bit.ly/2auOpYL

 Monitor

 Keyboard

 Three buttoned mouse

(a standard clickable

scrollwheel should suffi ce)

 unzip Downloads/riscos-2015-02-17.14.zip

The .IMG fi le is in the Home directory, ready for the SD card.

03 Find your SD card
Next, it’s time to write the OS to a formatted SD card.

With the card inserted into the card reader, switch to the

Terminal window, and check your mounted devices:

 df -h

In this list, you’ll fi nd the SD card listed, which you’ll identify by

its fi lepath, name, and size.

04 Install RISC OS on the Raspberry Pi
Next, unmount the SD card:

 umount /dev/mmcblk0p1

Next, use the dd command to write the image fi le. Take extra

Above SD cards are often labelled with the letters “mmc” or “sdd” for
easy identifi cation

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 41

Two package
managers are
included in RISC
OS. Packman is
designed to install
and upgrade
software, while
!Store offers
commercial
software. Software
can also be installed
manually, by copying
ZIP archives from
your desktop
computer to the SD
card, and copying
the fi les from the
archive into the RISC
OS fi le system. Note
that old software
you may have used
at school probably
won’t run, due to
differences in the
architecture of
early ARM CPUs and
modern iterations.

Installing
software on
RISC OS

care to enter the correct destination – a mistake can delete

your hard drive!

 sudo dd bs=4M if=riscos-2015-02-17-RC14.img of /dev/
mmcblk0

Take note here how the “p1” section is omitted, as this refers

to a partition.

05 Alternative installation
If you would rather avoid the Terminal-focused

installation of RISC OS, you can alternatively download the

NOOBS software and copy it to your SD card before booting

the Pi and selecting RISC OS as your operating system.

Once installed, proceed with the steps below to get familiar

with RISC OS.

06 Boot RISC OS
After a few minutes unmount and insert into your Pi

before switching it on. Make sure you’ve got a mouse and

keyboard connected to your Raspberry Pi fi rst, as well as

an Ethernet cable, as RISC OS is unfortunately not currently

compatible with wireless networking.

07 Is your mouse compatible?
Anyone who recalls the Acorn Archimedes will know

that RISC OS requires a three-button mouse. The middle

button is a dedicated context menu (like right-clicking in

Linux, OS X and Windows), but as long as you have a clickable

scrollwheel on your mouse, this shouldn’t be a problem.

08 Enable Ethernet on RISC OS
By default, Ethernet is disabled. To fix this,

follow the instructions in the welcome/html file on the

desktop. If this is missing, double-click on !Configure, then

Network>Internet>Enable TCP/IP Protocol Suite, followed by

Close>Save.

Finally, you can select Reboot now to restart the system with

Ethernet enabled.

09 Get to grips with RISC OS
If you have previous experience with RISC OS, much of

what you see on the desktop will be familiar. Otherwise, don’t

worry, it’s pretty straightforward. Applications are essentially

directories with ! (known in RISC OS as pling) as a prefi x, and

are launched by double-clicking the folder.

Above Ensure you enter the correct fi lepath and destination device
name when writing to SD cards

Above Use a three buttoned mouse or your mouse scrollwheel to open
the menu

Above You’ll need an Ethernet cable connected to your router, or an
Ethernet Wi-Fi adaptor

Above Spend just a few minutes of your time familiarising yourself with
the RISC OS desktop

Above NOOBS offers an alternative, Terminal-free method of installing
RISC OS on your Raspberry Pi

Above You’ll need your keyboard and mouse connected to use RISC OS

Tips | Tricks | Hacks

Develop your Sense HAT skills and start a coding a
version of Rock, Paper, Scissors, Lizard, Spock

Master essential
Sense HAT skills

In 2015, two Raspberry Pi computers were each fitted with
an Astro Pi, which is an add-on board boasting an array of
sensors and an 8x8 LED matrix. These were fl own to the ISS

and delivered to Major Tim Peake with a selection of school

children’s experiments. Eventually, the Astro Pi was released for

sale to the public as the rebranded ‘Sense HAT’. This consists of

exactly the same hardware and sensors set found on the Astro

Pi but with a new ‘Sense HAT’ API. The fi rst part of this two-part

tutorial introduces you to the Sense HAT hardware and walks

you through the skills required to create a Sense HAT version of

the updated classic Rock, Paper, Scissors, Lizard, Spock game.

These skills also stand alone and you can adapt them for use in

your own projects.

01 Install the Sense HAT software
First, attach the board to the GPIO header and install the

Sense HAT software. This is pre-installed on the latest Raspbian

images; for older images it can be downloaded – boot up your

Raspberry Pi, load the LX Terminal and type in sudo apt-get

install sense-hat to install the software. On completion reboot

your Raspberry Pi.

 sudo apt-get update
 sudo apt-get install sense-hat
 sudo reboot

02 Scrolling a message
Writing code to scroll text on LCD / LED displays can be

challenging and frustrating. The Sense HAT API removes the

diffi culties and simplifi es the whole procedure to a simple line

of code: sense.show_message(“This is a test message”). Open

your Python editor and enter the code at the bottom of this step,
Below The Sense
HAT isn’t just about
the LED array – it’s
also packed full of
useful sensors

What you’ll need
 Raspberry Pi

 Sense HAT

42 Raspberry Pi Tips, Tricks & Hacks

Raspberry Pi Tips, Tricks & Hacks 43

Tips | Tricks | Hacks

save and then run it. Your message will be scrolled across the

Sense HAT LEDs. Change the text between the quotation marks

to add your own message. Adjust the colour of the message and

the time it takes to scroll by including the lines text_colour=[255,

0, 0]) (setting the RGB value) and scroll_speed=(0.05). Try

experimenting with the example code below:

 from sense_hat import Sense HAT
 sense = SenseHat()
 sense.show_message(“Linux User and Developer”,
text_colour=[255, 0, 0])

03 Taking a temperature reading
The Sense HAT has a built-in heat sensor that can be

used to read and return the current temperature (line 3). The

sensor is fairly close to the CPU and this may pick up some of

the residual heat. However, on the whole the reading is sound.

To measure the temperature, return to your Python editor and

type in the code below, then save and run the fi le. This will

return the current temperature reading and print it out:

 from sense_hat import SenseHat
 sense = SenseHat()
 temp = sense.get_temperature()
 print(“Temperature: %s C” % temp)

04 Compass reading
One of the more nifty sensors is the magnetometer,

which can be used as a compass. This returns a measurement of

the Sense HAT’s position in relation to magnetic north. Again the

code is easy to use: sense.get_compass() in line 3 returns the

position, which is stored in a variable called north. The value that

is measured is then printed out in line 4. Use the code example

below to test the compass sensor and the readings:

 from sense_hat import SenseHat
 sense = SenseHat()
 north = sense.get_compass()
 print(“North: %s” % north)

05 Mapping an LED image from a picture
Images are built up of pixels which combine to

create an overall picture. Each LED on the matrix can be

automatically set from an image fi le. For example, an image

of a lizard can be loaded, the colours and positions calculated,

and then the corresponding LEDs enabled. The image needs

to be 8 x 8 pixels in size so that it fi ts the LED Matrix. Download

the supplied test picture fi le, lizard.png, and save it into the

same folder as your program. Use the code below to open and

load the image of the lizard (line 3). The Sense HAT will do the

rest of the hard work for you:

 from sense_hat import SenseHat
 sense = SenseHat()
 sense.load_image(“lizard.png”)

06 Make your own 8 x 8 image
There are two further methods to create an image with

the LEDs. The fi rst is a superb on-screen program that enables

you to manipulate the LEDs in real time. You can change the

colours, rotate them and then export the image as code or as

an 8 x 8 PNG fi le.

Install ‘Python PNG library’ by opening the terminal and

typing sudo pip3 install pypng. After this has fi nished, type git

clone https://github.com/jrobinson-uk/RPi_8x8GridDraw.

Once the installation has completed, move to the RPi folder

with cd RPi_8x8GridDraw, then type python3 sense_grid.py to

run the application.

07 Create and export your image
The Grid Editor enables you to select from a range of

colours displayed down the right-hand side of the window.

Simply choose the colour and then click the location of the LED

on the grid, select ‘Play on LEDs’ to display the colour on the

Sense HAT LED. Clear the LEDs using the ‘Clear Grid’ button

and then start over. Finally, when exporting the image, you can

either save as a PNG fi le and apply the code in the previous step

to display the picture, or you can export the layout as code and

import that into your program.

Sheldon Cooper
from The Big Bang
Theory famously
brought the game
into the mainstream
media when he
explained how it was
played to his friend,
though it wasn’t
actually invented
on the show. The
original expansion
of the classic Rock,
Paper, Scissors
game is attributed
to Sam Kass and
Karen Bryla.

The origins
of RPSLS

Left Each of the LED
squares in this grid
can be individually
controlled, so you
can draw images

Tips | Tricks | Hacks

44 Raspberry Pi Tips, Tricks & Hacks

If you can’t wait for
the next part of this
tutorial, then you
can play around
with this Python
version of the RPSLS
game. The Sense
HAT version uses
similar mechanics
to calculate the
winner and losers of
each round played:
https://trinket.io/
python/46302ff1af

Python
version of
RPSLS

Right The Sense HAT
Grid Editor makes
it easy to generate

your image code

10 Create an image of a lizard
Now you can begin to customise your own images to use.

To get started, create a simple lizard using the LED layout. Then

experiment with your own ideas and concepts. Remember, you

will also need images for Rock, Paper, Scissors and Spock. Johan

Vinet has some excellent and inspirational examples of 8 x 8 pixel

art http://johanvinet.tumblr.com/image/127476776680.

11 Selecting a random image
Next you need a code to scroll through your images. Begin

by renaming each of the images starting from one – for example

1.png, 2.png. Create a new variable called playersChoice which

will store the current picture filename. Next, load the image using

the code sense.load_image(str(playersChoice) + “.png”) – note

that playersChoice needs to be converted into a string before it is

used. Once the picture is displayed, the variable is incremented,

which loads the next picture. Finally, add a conditional to check if

you have reached your last picture. For example, if you have five

images then use:

 if playersChoice == 5:
 playersChoice = 0

… to check when the variable reaches the last image and to

reset the variable to zero. This loads the first picture and the loop

starts again from the beginning:

 import time
 while True:
 sense.load_image(str(playersChoice) + “.png”)
 playersChoice = playersChoice + 1
 time.sleep(1)
 if playersChoice == 5:
 playersChoice = 0

12 Clearing the image
When cycling through the images, the LEDs will turn

on and off to the corresponding requirements of your code.

However, there will be times when you need to turn off all the

LEDs at once. This is referred to as clearing them. To clear the

LEDs and set them all to ‘off’, use the line sense.clear().

13 Setting the joystick up in PyGame
The Sense HAT is equipped with a small multi-directional

joystick that can be programmed to respond to direction.

The RPSLS game makes use of the joystick to cycle through

your images and to select one. In a new Python file, set up the

PyGame window by importing the PyGame modules at the top of

your file (lines 1 and 2). Next, initialise with pygame.init(). PyGame

runs in a separate window, but since the game takes place on the

Sense HAT, the window is obsolete. You can therefore minimise

the size by using: pygame.display.set_mode((140, 180)) line 5.

 import pygame
 from pygame.locals import *

 ###Set up PyGame Screen###

 pygame.init()
 pygame.display.set_mode((140, 180))

14 Add joystick controls
To add the joystick movement, create a variable called

“running” which is set to True (line 1). Then add a while statement

08 Code each LED: Part 1
The second method to create an image is to individually

code each LED and combine these. To set the colour of an LED,

create a variable for a colour and assign an RGB value to it. Add

additional colours by creating additional variables. Now create

a representation of the image using the variable names: in this

example, the X and O symbols combine to make a question mark.

Set the LEDs with the code sense.set_pixels(question_mark):

 from sense_hat import SenseHat
 sense = SenseHat()
 X = [255, 0, 0] # Red
 O = [255, 255, 255] # White
 question_mark = [
 O, O, O, X, X, O, O, O,
 O, O, X, O, O, X, O, O,
 O, O, O, O, O, X, O, O,
 O, O, O, O, X, O, O, O,
 O, O, O, X, O, O, O, O,
 O, O, O, X, O, O, O, O,
 O, O, O, O, O, O, O, O,
 O, O, O, X, O, O, O, O
]
 sense.set_pixels(question_mark)

09 Code each LED: Part 2
To add more colour variations to your image, create a

new variable and assign the RGB values using the same format.

Replace your previous code with the example below to create a

new image. Lots of websites can convert the RGB values for all

16,581,375 colours – try http://www.colorpicker.com.

 X = [255, 0, 0] # Red
 O = [255, 255, 255] # White
 B = [0, 255, 0] #Green
 new_image = [
 B, B, O, O, O, O, X, X,
 B, B, O, O, O, O, X, X,
 B, B, O, O, O, O, X, X,
 B, B, O, O, O, O, X, X,
 B, B, O, O, O, O, X, X,
 B, B, O, O, O, O, X, X,
 B, B, O, O, O, O, X, X,
 B, B, O, O, O, O, X, X
]
 sense.set_pixels(new_image)

Raspberry Pi Tips, Tricks & Hacks 45

Tips | Tricks | Hacks

(line 2) to continually check whether the joystick has been

moved. The program checks for an event on line 4 and the

picture cycle restarts after the fi fth image. Line 5 checks for two

conditions being met: a key being pressed and the playersChoice

being less than a value of 5. If the condition is met, it checks for a

joystick movement. The up arrow on the keyboard corresponds

to K_UP, which in essence is the joystick moved up (line 6).

Finally, add a print statement to test that code is responding to

the joystick movement and that it works correctly (line 7).

 running = True
 while running == True:
 for event in pygame.event.get():

 if event.type == KEYDOWN and playersChoice < 5:
 if event.key == K_UP:
print(“UP”)

15 Selecting a picture
You have now coded PyGame to wait for ‘events’ and

check and respond if the joystick is moved ‘up’. In the RPSLS

game, this procedure is used to enable the player to select a

picture that represents their turn – for example, Paper. Replace

the print(“UP”) on line 7 with the image section code used in

step 11. As before, use sense.load_image(str(playersChoice)

+ “.png”) to load the image onto the LEDs, then increment the

playersChoice variable using playersChoice = playersChoice + 1

to select the next picture. Line 6 checks if you have reached the

end of the picture cycle and then resets it back to a value of zero

(line 8), so the cycle begins again starting form picture one:

 if event.type == KEYDOWN and playersChoice < 5:
 if event.key == K_UP:
 print (playersChoice)
 sense.load_image(str(playersChoice) + “.png”)
 playersChoice = playersChoice + 1
 if playersChoice == 5:
 playersChoice = 0

The Sense HAT is equipped
with a small multi-
directional joystick that can
be programmed
to respond to direction

16 Confi rming your selection
Once you have scrolled through and chosen your picture

then you need to be able to select it. This is achieved pressing the

whole joystick button down, which acts as if the Return key has

been pressed. On line 2, the code if event.key == K_RETURN:

checks for this action and then responds by breaking the loop.

The loop stops cycling through and the current image number

is then stored inside the playersChoice variable, where it is used

later in the game to compare with the Computer’s choice and

calculate the winner.

 `̀ C̀hecks for a ‘select / Enter’ Choicè `̀
 if event.type == KEYDOWN:
 if event.key == K_RETURN:
 running = False
 break
 `̀ Ènds loop and moves onto main gamè `̀

17 RPSLS
You now have a basic structure for the start of the RPSLS

game. The program enables you to scroll through up to fi ve

images, which each represent one of the hands that you can

play: Rock, Paper, Scissor, Lizard or Spock. In the next issue, part

two of this tutorial will code the mechanics of the gameplay and

combine this to create the fi nished RPSLS game. A sneak video

of the fi nal game in action can be viewed here: www.youtube.

com/watch?v=T_ZvWkMgVFM. In the meantime, work on

creating your 8 x 8 pixel art.

Left We’ll use the
tiny joystick in the
bottom-right corner
as the input for our
selection interface

46 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Use your skills from last issue’s tutorial to
create a Sense HAT version of RPSLS

Master essential Sense
HAT skills: Part 2

You will probably have played Rock, Paper, Scissors in real life.
The issue with this version is that there are only three possible

outcomes other than a tie. Sam Kass and Karen Bryla invented

an alternative version which adds “Spock” and “lizard”. “Spock”

is signified with the Star Trek Vulcan hand sign, while “lizard” is

shown by forming the hand into a mouth. Spock smashes scissors

and vaporises rock; he is poisoned by lizard and is disproved by

paper. Lizard poisons Spock and eats paper; it is crushed by rock

and decapitated by scissors. This tutorial walks you through

creating your own SenseHAT version of the game.

01 How RPSLS works with the Sense HAT
When you complete this tutorial you will have a folder

which contains five 8 x 8 images, each representing one of the

items: rock, paper, scissors, lizard or Spock. These images are

named 0.png, 1.png, 2.png, 3.png and 4.png. When the program

runs, it will welcome you and ask you to use the joystick to select

an item. Each time you push the joystick up, the item will change.

Press enter to select. The computer then selects a random item.

Each picture is assigned a value and a formula is used to find the

modulus (the remainder) of dividing the two values. The value of

the remainder determines the outcome: win, lose or draw.

02 Import the modules
Boot up your Raspberry Pi and open the LX terminal. Type

sudo idle3 to load the Python 3 editor. Import the pygame module

(line one) and the SenseHAT module (line three). The program uses

the random module to select the computer’s choices in the game.

Import the random module (line four).

 import pygame
 import pygame.locals import *
 from sense_hat import SenseHat
 import random
 import time

03 Scrolling a message
Throughout the game the player is updated via messages

which are scrolled across LED matrix. The SenseHAT API

simplifies the whole procedure to a simple line of code: sense.

show_message(“This is a test message”). Your message will be

scrolled across the SenseHAT LEDs. Change the text between the

quotation marks and add your own message. Adjust the colour

of the message and the time it takes to scroll by including the

lines, text_colour=[255, 0, 0]) (setting the RGB value) and scroll_

speed=(0.05), Try experimenting with the example code:

 sense = SenseHat()

 sense.show_message(“Linux User &
Developer”, text_colour=[255, 0,
0])

04 Mapping an LED image
Images are made of pixels that

combine to create an overall picture. Each LED on the matrix can

be automatically set from an image file. For example, an image of

a lizard can be loaded, the colours and positions calculated and

then the corresponding LEDs enabled. The image needs to be 8 x 8

pixels so that it fits the LED matrix. Download the test picture file –

lizard.png – and save it into the same folder as your program. Use

the code below to open and load the image of the lizard.

 from sense_hat import SenseHat
 sense = SenseHat()
 sense.load_image(“lizard.png”)

05 Create the game variables and initialise PyGame
Next, create variables to store the player’s choice, line

one, the computer’s choice, and also to track the picture number

that is currently displayed on the LED matrix, global count. These

are set as global variables that enable them to be accessed

within other parts of the program and to return the values that are

stored. Now, set up the PyGame window typing pygame.init() and

pygame.display.set_mode((140, 180)). The window is not used

in the game so set it to a small size. Load the first image with the

code sense.load_image(“0.png”), this loads picture zero from

your folder.

You may find that the LEDs are too bright, add sense.low_light

= True, to reduce the brightness. Finally set playersChoice to 0,

the first image, and then set the game running with gameRunning

= True.

 global playersChoice
 global computer_choice
 global count
 ###Set up PyGame Screen###
 pygame.init()
 pygame.display.set_mode((140, 180))

###Prepare Sense Hat###
 sense = SenseHat()
 sense.load_image(“0.png”)
 sense.low_light = True #save your eyes!
 playersChoice = 0
 gameRunning = True

What you’ll need
 Wireshark

(www.wireshark.org)

 Raspberry Pi 2

 SenseHAT

Raspberry Pi Tips, Tricks & Hacks 47

Tips | Tricks | Hacks

06 Convert the values / numbers into items
During the RPSLS gameplay the program uses numbers

to identify the items instead of their names. This means you can

select a picture and also use a modulus operation to calculate

the outcome of the game. Create a function that converts

and assigns the value into the respective item name. A simple

conditional checks what the number is and returns the name

of the item. The value of ‘scissors’ is set twice – during the

gameplay a loop checks that the fi fth image has been loaded

and then resets the value to zero which would result in the fi fth

image not being displayed.

 def number_to_name(number):
 if number == 0:
 return “Rock”
 elif number == 1:
 return “Spock”
 elif number == 2:
 return “Paper”
 elif number == 3:
 return “Lizard”
 elif number == -1: ### because value is 5 so re-sets
to 0, zero - 1 = -1 ###
 return “Scissors”
 elif number == 4: ### because value is 5 so re-sets
to 0, zero - 1 = -1 ###
 return “Scissors” ### for the computer

import pygame
from pygame.locals import *
from sense_hat import SenseHat
import random
import time

global playersChoice
global computer_choice
global count

###Set up PyGame Screen###
pygame.init()
pygame.display.set_mode((140, 180))

###Prepare Sense Hat###
sense = SenseHat()
sense.load_image(“0.png”)
sense.low_light = True #save your eyes!

playersChoice = 0
gameRunning = True

‘’’Converts the Number into the choice i.e.
lizard, spock etc ‘’’
def number_to_name(number):
 if number == 0:
 return “Rock”
 elif number == 1:
 return “Spock”
 elif number == 2:
 return “Paper”
 elif number == 3:
 return “Lizard”
 elif number == -1: ### because value is 5
so re-sets to 0, zero - 1 = -1 ###
 return “Scissors”

Full code listing

07 Check for joystick movement
Create another function that holds the main mechanics

of the gameplay. Start by adding the global variables sense.

set_rotation(90), which positions the image correctly. Next use

for event in pygame.event.get(): to check for a joystick movement.

The joystick is used to cycle through a loop of the five LED images.

The line if event.type == KEYDOWN and playersChoice < 5:

checks that the player has moved the joystick up and also that

the picture number is less than 5. If it is equal to five then the

loop resets. If the playersChoice value is less than five then the

corresponding picture number is loaded to the LEDs using sense.

load_image(str(playersChoice) + “.png”) line 13 and the variable

incremented. The loop restarts from the beginning and checks for

a joystick movement and then displays the relevant picture file.

 def mainGame():
 ###PLAYER SELECTION###
 ###Loops while running variable is True###

 running = True
 global playersChoice
 global computer_choice
 while running == True:
 sense.set_rotation(90)
 for event in pygame.event.get():
 if event.type == KEYDOWN and playersChoice < 5:
 if event.key == K_UP:

 elif number == 4: ### because value is 5 so
re-sets to 0, zero - 1 = -1 ###
 return “Scissors” ### for the computer

def mainGame():
 ###PLAYER SELECTION###
 ###Loops while running variable is True###
 running = True
 global playersChoice
 global computer_choice
 while running == True:
 sense.set_rotation(90)
 for event in pygame.event.get():

 if event.type == KEYDOWN and
playersChoice < 5:
 if event.key == K_UP:
 print (playersChoice)
 sense.load_image(str(playersChoice) +
“.png”)
 playersChoice = playersChoice + 1
 if playersChoice == 5:
 playersChoice = 0

 ‘’’Checks for a ‘select / enter’ Choice
‘’’
 if event.type == KEYDOWN:
 if event.key == K_RETURN:
 running = False
 break
 ‘’’Ends loop and moves onto main
game’’’

 ‘’’Message for player about their choice’’’
 #print (“Your Choice is”, playersChoice)
#test

You will need an

image for Rock,

Paper, Scissors and

Spock. Johan Viet

has some excellent

and inspirational

examples of 8 x 8

pixel art. Check

them out at http://

johanvinet.tumblr.

com/image/

127476776680

Pixel
inspiration

48 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

 sense.load_image(str(computer_choice) + “.png”)
 count = count - 1

11 Game status update
The next part is to use messages to update the player. Use

the function in step six to look up and convert the number into an

item: computerMessage = number_to_name(number). Now use

sense.show_message(“Computer = “, text_colour=[0, 150, 255],

scroll_speed = 0.06) to display the computer’s final choice:

#time.sleep(1)
 ‘’’Message for player about the computer’s choice’’’
 print (“The computers choice is”, computer_choice)
 number = computer_choice
 computerMessage = number_to_name(number)
 print computerMessage ##test
 sense.set_rotation(0)
 sense.show_message(“Computer = “, text_colour=[0,

150, 255], scroll_speed = 0.06)
 #sense.show_message(computerMessage, text_colour=[0,
0, 255], scroll_speed = 0.08)

 sense.load_image(str(computer_choice) + “.png”)

12 Did you win?
The value of the computer’s choice is subtracted from

the value of the player’s choice and divided by five, returning the

remainder to determine the outcome of the game. Create a new

variable called result and assign the calculation to it, result =

(int(computer_choice - (playersChoice-1))) % 5. If the result is

zero, then the player and the computer have picked the same item:

the game is a tie. Use an IF statement on line five to check the value

and then display a message using sense.show_message(“Player

and Computer Tie!”, text_colour=[0, 0, 255], scroll_speed = 0.08).

###WINNER CALCULATED###
 ‘’’Calculates the Winner’’’
 result = (int(computer_choice - (playersChoice-1))) % 5
 #print result
 if result == 0:
 sense.show_message(“Player and Computer Tie!”,

text_colour=[0, 0, 255], scroll_speed = 0.08)

To win, the value of the remainder has to be greater than or equal

to three. Use an ELSE IF statement to check this, elif result >=3.

Any other value means that the computer has won this round. Add

an else statement and use sense.show_message(“Computer

Wins!”, text_colour=[255, 0, 0], scroll_speed = 0.08 to display the

winning or losing messages.

 elif result >=3:
 sense.show_message(“Player Wins!”, text_
colour=[0, 255, 0], scroll_speed = 0.08)

 else:
 time.sleep(1)
 sense.show_message(“Computer Wins!”, text_
colour=[255, 0, 0], scroll_speed = 0.08)##??

13 Introducing the game
Now to add an intro message and instructions. You could

add these into the main game loop but each time you start a new

round you have to wait for them to repeat. Type sense.show_

message(“Welcome to RPSLS!”, text_colour=[155, 100, 30],

scroll_speed = 0.08) to scroll the messages and load the first

image onto the LEDs with sense.load_image(“0.png”).

 print (playersChoice)
 sense.load_image(str(playersChoice) + “.png”)
 playersChoice = playersChoice + 1
 if playersChoice == 5:
 playersChoice = 0

08 Select your item
When you are scrolling through the images, you need

to be able to select an item to play. Press the joystick down to act

as the Return key. Add the line if event.key == K_RETURN: line

three, to respond to the joystick being pressed down, then end the

picture cycle loop using running = False. Finally ‘break’ out of the

loop to move onto the next part of the game.

 ‘’’Checks for a ‘select / Enter’ Choice ‘’’
 if event.type == KEYDOWN:
 if event.key == K_RETURN:
 running = False
 break

09 Update the status
Once you have made your selection, scroll a confirmation

message across the LEDs. Create a new variable called

number and assign the playersChoice value to it. Next, use

the function in step six to convert the number into the name

of the item, playerMessage = number_to_name(number).

Finally scroll the message across using the line, sense.show_

message(playerMessage, text_colour=[0, 0, 255], scroll_speed

= 0.08). You can change the text colour by altering the values within

the square brackets and also the speed of the scroll between the

values of zero and one.

 ‘’’Message for player about their choice’’’
 number = playersChoice - 1
 playerMessage = number_to_name(number)
 print playerMessage
 sense.set_rotation(0)
 sense.show_message(“You = “, text_colour=[0, 255,
255], scroll_speed = 0.08)

 sense.show_message(playerMessage, text_colour=[0, 0,
255], scroll_speed = 0.08)

10 The computer’s selection
Now it’s the computer’s turn. First the computer

selects a random number between 5 and 50, count = random.

randrange(5,50). This is a random number of times that it will

cycle the choices to give the impression of ‘thinking’. Then

the computer selects a random number between 0 and 5,

computer_choice = random.randrange(0,5). This is the

computer’s ‘item’ selection. Then one is subtracted from the

cycle and the computer selects a new picture. This continues

while the value of count is greater than zero. In each cycle

the picture is displayed on the LED matrix with sense.load_

image(str(computer_choice) + “.png”)

###COMPUTER SELECTION
 ‘’’Computer selects a random choice from the

options’’’
 count = random.randrange(5,50)
 sense.set_rotation(90)
 while count > 1:
 computer_choice = random.randrange(0,5)
 print computer_choice
 time.sleep(0.1)

A simple method to
create your images
is to use the RPi
Grid Draw program.
This enables you
to manipulate the
LEDs in real time.
You can change the
colours, rotate them
and then export the
image as code or as
an 8 x 8 png file.
 Install ‘Python
PNG library’, open
the Terminal window
and type: sudo pip3
install pypng. After
this has finished
type, git clone
https://github.
com/jrobinson-uk/
RPi_8x8GridDraw.
Once the installation
has completed
move to the RPi
folder, type cd
RPi_8x8GridDraw,
type python3
sense_grid.py to run
the application

Creating
the 8 x 8
images

Raspberry Pi Tips, Tricks & Hacks 49

Tips | Tricks | Hacks

###START THE GAME##
 sense.show_message(“Welcome to RPSLS!”, text_
colour=[155, 100, 30], scroll_speed = 0.08)
sense.show_message(“Pleases use ‘Up’ to select”, text_
colour=[155, 255, 255], scroll_speed = 0.05)
sense.load_image(“0.png”)

14 Detecting play
Create a while loop that checks that the game is running.

If it is, the game is in play. Next set a variable called play_again

to a value of one. This is used later on to end the game or to play

another round. Then call the function created in steps seven which

holds the game mechanics, on line three, type mainGame(). When

the round finishes scroll a message across the LEDs asking the

player if they want to play again, sense.show_message(“Play

Again?”, text_colour=[255, 255, 255], scroll_speed = 0.08) line four.

 while gameRunning == True:
 play_again = 1

 mainGame()
 sense.show_message(“Play Again?”, text_colour=[255,
255, 255], scroll_speed = 0.08)

Full code listing (continued)
 number = playersChoice - 1
 playerMessage = number_to_name(number)
 print playerMessage
 sense.set_rotation(0)
 sense.show_message(“You = “, text_colour=[0, 255,
255], scroll_speed = 0.08)
 sense.show_message(playerMessage, text_colour=[0,
0, 255], scroll_speed = 0.08)

 ###COMPUTER SELECTION###
 ‘’’Computer selects a random choice from the
options’’’
 count = random.randrange(5,50)
 sense.set_rotation(90)
 while count > 1:
 computer_choice = random.randrange(0,5)
 print computer_choice
 time.sleep(0.1)
 sense.load_image(str(computer_choice) + “.png”)
 count = count - 1

 ‘’’Message for player about the computer’s
choice’’’
 print (“The computers choice is”, computer_choice)
 number = computer_choice
 computerMessage = number_to_name(number)
 print computerMessage ##test
 sense.set_rotation(0)
 sense.show_message(“Computer = “, text_colour=[0,
150, 255], scroll_speed = 0.06)
 #sense.show_message(computerMessage, text_
colour=[0, 0, 255], scroll_speed = 0.08)
 sense.load_image(str(computer_choice) + “.png”)

 print computerMessage
 time.sleep(1)

 ###WINNER CALCULATED###
 ‘’’Calculates the Winner’’’
 result = (int(computer_choice - (playersChoice-1)))
% 5

 if result == 0:
 sense.show_message(“Player and Computer Tie!”,
text_colour=[0, 0, 255], scroll_speed = 0.08)
 #print “tie”
 elif result >=3:
 sense.show_message(“Player Wins!”, text_
colour=[0, 255, 0], scroll_speed = 0.08)
 #print “Player wins!”
 else:
 time.sleep(1)
 sense.show_message(“Computer Wins!”, text_
colour=[255, 0, 0], scroll_speed = 0.08)##??
 #print “Computer wins!”
 print “ “

###START THE GAME##
sense.show_message(“Welcome to RPSLS!”, text_
colour=[155, 100, 30], scroll_speed = 0.08)
sense.show_message(“Pleases use ‘Up’ to select”, text_
colour=[155, 255, 255], scroll_speed = 0.05)
sense.load_image(“0.png”)

while gameRunning == True:
 play_again = 1

 mainGame()
 sense.show_message(“Play Again?”, text_colour=[255,
255, 255], scroll_speed = 0.08)
 while play_again == 1:
 for event in pygame.event.get():
 if event.type == KEYDOWN:
 if event.key == K_UP:
 play_again = 0

 if event.type == KEYDOWN:
 if event.key == K_DOWN:
 print(“Bye”)
 sense.show_message(“Bye Bye”, text_
colour=[255, 255, 255], scroll_speed = 0.08)
 play_again = 0
 gameRunning = False

15 Play again?
To respond to the ‘Play Again’ question, use an IF statement

to select the option to play again. This is enabled by moving the

joystick up. Use for event in pygame.event.get(): on line two and

check for a ‘keydown’ event, the joystick being moved up, if event.

type == KEYDOWN:, if event.key == K_UP: lines three and four. If

the Up is selected then the play again variable is set to zero, line

five, which ends the IF statement, and starts the game again.

 while play_again == 1:
 for event in pygame.event.get():
 if event.type == KEYDOWN:
 if event.key == K_UP:
 play_again = 0

16 End the game and exit
Code this option to quit by checking for a joystick

movement down, if event.key == K_DOWN: Type a message

using sense.show_message(“Bye Bye”, text_colour=[255,

255, 255], scroll_speed = 0.08) and change the gameRunning

variable to False. When the program loops back to the start it will

fi nd that the loop from step 14 is now False, so the game will stop

running, as you can see in the last section of code. Enjoy playing!

50 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Conduct experiments, monitor pollutants and more
with this clever little module for your Raspberry Pi

Environmental science
with the Sensly HAT

The Sensly is a smart module attached to the Raspberry Pi.
It has its own microprocessor that can handle analog data
and handle sampling from various sensors without the need
to waste your Raspberry Pi’s processing power. There are

three different gas sensors attached to the board, allowing

you to sense a multitude of gases, as well as humidity and

temperature sensors. Plus, this Raspberry Pi HAT can be easily

extended with its array of analog ports and an I2C interface.

In keeping with the Raspberry Pi way of doing things, the

module also provides a Python API that does all of the hard

work for you. All of the maths, calibration and error correction

is handled by the API itself, allowing you to play around with

meaningful data immediately.

02 Testing the Sensly
The fi rst step is ensure the Raspberry Pi can

communicate with the Sensly HAT and make sure it is

functioning correctly. Type the following command and it will

respond with “ok”, and give a report if everything is working:

 # Run test sequence on the Sensly
 sensly-test

What you’ll need
 Sensly HAT
sensly.uk

01 Setting up your Sensly HAT
This tutorial assumes you have set up your Raspberry

Pi and it is connected to the Internet. So, the fi rst step is to plug

your Sensly HAT into the Raspberry Pi header. Once you have

done this, power on the Raspberry Pi and type the following

commands into the terminal:

 # Install git so we can download the API
 sudo apt-get install git
 git clone https://github.com/Altitude-Tech/SenslyPi.git
 cd SenslyPi
 # Install the python API
 sudo python setup.py install

Raspberry Pi Tips, Tricks & Hacks 51

Tips | Tricks | Hacks

05 Getting pollution data
Now that we know how to get the gas sensors ready to

read data, it’s time to start taking some measurements. Add the

following code to the previous program:

 While(True):
 # Print the general level of pollution
 print(“General pollution level (PPM)”)
 print(str(atmosphere.pollution()))

 # Print the level of industrial pollution
 # (e.g. benzene, nitrogen oxides)
 print(“Industrial Pollution (PPM)”)
 print(str(atmosphere.pollution.industrial()))

 # Print the Humidity
 print(“Humidity”)
 print(str(atmosphere.humidity()))

 time.sleep(20)

06 Adding custom sensors
The Sensly provides fi ve ports for additional sensors,

which can easily be controlled with a simple Python script.

They are particularly useful because the Raspberry Pi does not

provide any native analog ports. This allows you to add extra

sensors to suit your projects, such as an LDR to measure light

pollution. Using the following script you can easily read analog

and digital data from the expansion ports:

 import sensly
 from sensly import Port

 sensor1 = Port(Sensly.port1)

 print(str(sensor1.analog_read()))

03 Using the API
We are now going to use a terminal-based text editor to

write some code – we’re going to use Nano but you can use any

editor you like. The following command will create a fi le called

sensly.py and open it for editing.

 nano sensly.py

You can type the following program to get basic data from the

Sensly.

 import os
 from sensly import Gases

 atmosphere = Gases()

 while True:
 print(“Humidity Level:”)
 print(str(atmosphere.humidity()))
 print(“Temperature:”)
 print(str(atmosphere.temp()))
 time.sleep(5)

04 Getting started with gas sensors
To start using the sensors, it gets a little bit more

complicated as we need to preheat the sensors to ensure the

readings from the Sensly are stable. To do this we use a loop

in the code which waits until the preheating sequence has

fi nished. This takes two to three minutes if you have only just

powered up the Sensly.

 import os
 from sensly import Sensly

 sensly = Sensly()

 # Wait until preheating has finished
 # so we can get stable readings
 While (sensly.preheated() == False):
 print(“Preheating”)
 time.sleep(1)

 print(“Sensly is ready to read pollution levels!”)

Above Pygal is
a dynamic SVG
charting library that
offers Python/CSS
styling by means of
preset themes

The brain of this

add-on board is its

ARM cortex, which

handles all of the

analogue signals,

data sampling and

communications

to the Pi. This is a

powerful little chip

with many features

and its fi rmware

is open source. As

a result, you can

fl ash reprogram

the HAT from your

Raspberry Pi, giving

you the fl exibility of a

microcontroller like

the Arduino but with

all the advantages

of a full operating

system – making this

a very fun little HAT to

tinker about with.

Unlocking
the ARM
cortex

07 Visualising your data
For this we are going to use a great open source project

called pygal, which makes it easy to generate cool vector graphs

from your data. First of all we need to install pygal, and then we

can write some code to generate some information on pollution

levels. Run the following commands to set up pygal:

 sudo apt-get install python-setuptools
 sudo easy_install pygal

The following code will sample the air for ten hours and generate

a vector graph, although you can edit the timings to suit

your needs:

 import pygal
 import os
 from sensly import Gases

 atmosphere = Gases()
 graph = pygal.Bar()

 samples = []
 for i in range(10):
 samples.append(atmosphere.pollution.industrial())

 graph.add(‘pollution’, samples)
 graph.render_to_file(‘pollution.svg’) # Generate graph

52 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

We are going to take you through the basics of wavetable
synthesis theory and use that knowledge to create a real-
time synthesiser in Python. At the moment, it is controlled

by the computer keyboard, but it could easily be adapted to

accept a MIDI keyboard as input.

The Python implementation of such a synthesiser turns out

to be too slow for polyphonic sound (ie playing multiple notes

at the same time) so we’ll use Cython, which compiles Python

to C so that you can then compile it to native machine code to

improve the performance. The end result is polyphony of three

notes, so this is not intended for use as a serious synthesiser.

Instead, this tutorial will enable you to become familiar with

synthesis concepts in a comfortable language: Python.

Once you’re fi nished, try taking this project further by

customising the mapping to better fi t your keyboard layout, or

tweaking the code to read input from a MIDI keyboard.

01 Install packages
Using the latest Raspbian image, install the required

packages with the following commands:

 sudo apt-get update
 sudo apt-get upgrade
 sudo apt-get install python-pip python2.7-dev
portaudio19-dev

 sudo pip install cython pyaudio

The fi nal step compiles Cython and PyAudio from source, so you

might want to go and do something else while it works its magic.

02 Disable built-in sound card
We had issues getting the Raspberry Pi’s built-in sound

card to work reliably while developing the synthesis code. For

What you’ll need
 Raspberry Pi 2

 USB sound card (we used

a Behringer UCA202)

Full code
FileSilo.co.uk/bks-B38

Learn how to write a simple polyphonic synthesiser (and the
theory behind it) using Python and Cython

Code a simple synthesiser

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 53

Tips | Tricks | Hacks

04 Start project
Start by creating a directory for the project. Then

download one cycle of a square wave that we will use as a

wavetable, like so:

 mkdir synth
 cd synth
 wget liamfraser.co.uk/lud/synth/square.wav

03 Test sound card
Now we can test the USB sound card. Type alsamixer and

then ensure that the volume is set to a comfortable level. If you’re

plugging speakers in, you’ll probably want it set to 100%. Then

type speaker-test, which will generate some pink noise on the

speakers. Press Ctrl+C to exit once you are happy that it’s working.

05 Create compilation script
We need a script that will profi le our Python code

(resulting in synth.html). Generate a Cython code for it and

fi nally compile the Cython code to a binary with GCC:

 editor compile.sh:
 #!/bin/bash
 cython -a synth.pyx
 cython --embed synth.pyx
 gcc -march=armv7-a -mfpu=neon-vfpv4 -mfloat-
abi=hard -O3 -I /usr/include/python2.7 -o synth.
bin synth.c -lpython2.7 -lpthread

(Notice the options that tell the compiler to use the fl oating

point unit.) Make it executable with:

 chmod +x compile.sh

#!/usr/bin/python2

import pyaudio
import time
from array import *
from cpython cimport array as c_array
import wave
import threading
import tty, termios, sys

class MIDITable:
 # Generation code from
 # http://www.adambuckley.net/software/beep.c

 def __init__(self):
 self.notes = []
 self.

 def (self):
 # Frequency of MIDI note 0 in Hz
 frequency = 8.175799

 # Ratio: 2 to the power 1/12
 ratio = 1.0594631

 for i in range(0, 128):
 self.notes.append(frequency)
 frequency = frequency * ratio

 def get_note(self, n):
 return self.notes[n]

cdef class ADSR:

 cdef public char state
 cdef int samples_per_ms, samples_gone

 def __init__(self, sample_rate):
 self.attack = 1.0/100
 self.decay = 1.0/300
 self.sustain_amplitude = 0.7
 self.release = 1.0/50
 self.state = ‘A’
 self.multiplier = 0.0
 self.samples_per_ms = int(sample_rate / 1000)
 self.samples_gone = 0

 def next_val(self):
 self.samples_gone += 1
 if self.samples_gone > self.samples_per_ms:
 self.samples_gone = 0
 else:
 return self.multiplier

 if self.state == ‘A’:
 self.multiplier += self.attack
 if self.multiplier >= 1:
 self.state = ‘D’
 elif self.state == ‘D’:
 self.multiplier -= self.decay
 if self.multiplier <= self.sustain_amplitude:
 self.state = ‘S’
 elif self.state == ‘R’:
 self.multiplier -= self.release

 return self.multiplier

Full code listing

Step 07

Step 08

that reason, we are using a USB sound card and will disable the

built-in card so that the default card is the USB one:

 sudo rm /etc/modprobe.d/alsa*
 sudo editor /etc/modules

Change ‘snd-bcm2835’ to ‘#snd-bcm2835’ and save, then:

 sudo reboot

Cython is a tool that compiles Python down to the C code that
would be used by the interpreter to run the code. This has the
advantage that you can optimise some parts of your Python code
into pure C code, which is signifi cantly faster. This is achieved by
giving C types, such as int, fl oat and char, to Python variables.

Once you have C code it can then be compiled with a C
compiler (usually GCC) which can optimise the code even
further. A downside to using Cython is that you can’t run Cython
optimised code with a normal Python interpreter. Cython is a nice
compromise because you get a similar simplicity to Python code
but higher performance than usual. Cython has a profi ler which
you can run using:

 cython -a synth.pyx

The profi ler outputs a html fi le which shows where to make
optimisations, giving insight into how much overhead using
Python introduces. For more details go to http://cython.org.

Cython

54 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

09 Generate notes
The note class is the core of our synthesiser. It uses

the wavetable to generate waves of a specific frequency. The

synthesiser asks the note class for a sample. After generating a

sample, the ADSR multiplier is applied and then returned to the

synthesiser. The maths of this are explained in the synthesis

theory boxout on the opposite page.

The note class does as much maths as the ADSR class, so

it is optimised as much as possible using cdef keywords. The

cpdef keyword used for the next_sample function means that

the function can be called from a non-cdef class. However, the

main synth class is much too complicated to give static types

to absolutely everything.

10 The audio flow
This synth class is the main class of the application. It

has two sample buffers that are the length of the buffer size.

While one buffer is being played by the sound card, the other

buffer is being filled in a different thread. Once the sound card

has played a buffer, the callback function is called. References

to the buffers are swapped and the buffer that has just been

filled is returned to the audio library.

The smaller the buffer size, the lower the latency. The

Raspbian image isn’t optimised for real time audio by default so

you may have trouble getting small buffer sizes. It also depends

on the USB sound card used.

cdef class Note:
 cdef int wavetable_len

 cdef c_array.array wavetable

 def __init__

 self.wavetable = wavetable
 self.wavetable_len =

 self. =

 self. = self.wavetable_len * \

/
 # Position in wavetable
 self. = 0.0
 # ADSR instance
 self.adsr =
 # Is this note done with
 self. = 0

 def
 = {0

= {1 . .
 self.

= 0

 adsr = self.adsr.

 if adsr < 0:
 self. = 1

= int(self.
= self. -

= self.
= 0

 # end of the table
 if + 1 == self.wavetable_len:

= self.wavetable[0
 else:

= self. +1

= + - *

+= *

 self. += self.
 if self. >= self.wavetable_len:
 self. -= self.wavetable_len

Full code listing (Cont.)
Step 09

Above A visual representation of an Attack,
Decay, Sustain, Release curve

08 Attack, Decay, Sustain, Release
The ADSR class applies a volume curve over time to the

raw output of an oscillator. It does this by returning a multiplier

to the note that is a multiple between 0.0 and 1.0. The version

we provide has an attack time of 100 ms, a decay time of 300

ms and a release time of 50 ms. You can try changing these

values to see how it affects the sound.

The ADSR class does a lot of maths (44,100 times per

second, per note). As such, we want to give types to all of the

variables so that the maths can be optimised into a raw C loop

where possible, because Python has a massive amount of

overhead compared to C. This is what the cdef keyword does.

If cdef public is used, then the variable can also be accessed

from inside Python as well.

07 MIDI Table
To synthesise the standard note of a piano, we need

a table of MIDI values. MIDI notes range from 0-127. MIDI note

60 is middle C on a piano. The MIDI Table class has a ‘get note’

function that returns the frequency of a note when you give it

a MIDI note number.

06 Start to code
Our code file is going to be called synth.pyx. This

extension tells Cython that it is not plain Python code (and as

such, can’t be ran in a normal Python interpreter). Create the

file with your favourite editor and add the imports.

 return out_sample

class Synth:
 BUFSIZE = 1024
 SAMPLERATE = 44100

 def __init__(self):
 self.audio = pyaudio.PyAudio()

 self.buf_a = array(‘h’, [0] * Synth.BUFSIZE)
 self.buf_b = array(‘h’, [0] * Synth.BUFSIZE)
 # Oldbuf and curbuf are references to buf_a or

 self.playbuf = self.buf_b
 self. = self.buf_a

 self.
 self.notes = []
 self.notes_on = []

 self.more_samples = .
 self.exit = .

 # MIDI table of notes -> frequencies
 self.midi_table = MIDITable()

 def stop(self):
 print
 self.exit.set()
 self.stream.stop_stream()
 self.stream.close()

 def stream_init(self):
 self.stream = self.audio.open(
 format = pyaudio.paInt16,
 channels = 1,
 rate = Synth.SAMPLERATE,
 output = True,

= Synth.BUFSIZE,
 stream_callback = self.callback)

 def (self):

 # correct format
 fh = .open(‘square.
 assert fh. == 1
 assert fh. == Synth.SAMPLERATE
 assert fh. == 2 # aka 16 bit

 data = fh.readframes(fh.

 self. = array(‘h’)
 self. .

 def (self):
 tmp = self.playbuf
 self.playbuf = self.
 self. = tmp

Full code listing (Cont.)
Step 09

Wavetable synthesis is where you use a single cycle of a
wave as a lookup table to synthesise sound. In this case we

have a square wave, but you can load any wave shape you

like. CD-quality audio has a sample rate of 44,100 Hz, which

is what we used in our implementation. At each sample, the

synthesiser outputs a value from the wavetable and then

increments a position pointer to the next value in the table.

However, if the wavetable has a frequency of 440 Hz then we

need to be able to step through it at arbitrary sizes (ie non-

integer values). To achieve this, we use linear interpolation.

Assuming the table had a frequency of 440 Hz and we

wanted a frequency of 220 Hz, we’d need to step through the

table at a step size of 0.5. This can be thought of as drawing

a line between two values in the table and picking a value on

the line as your output. As an example, if element 0 is 5 and

element 1 is 10 then element 0.5 would be 5 + ((10-5) * 0.5),

which gives us a value of 7.5. When you reach a position that

goes over the end of the table, you wrap around and start

again. There is no discontinuity as you’re storing a single cycle

of the wave in the table. The equation for step size is:

 step_size = table_size * (note_frequency /
sample_rate)

The wavetable oscillator gets us a note at the desired

frequency, but it’s always at maximum amplitude and will

sound rough and unnatural. If you cut off a wave in the middle

of a cycle there will be a pop or click, so this is where Attack,

Decay, Sustain and Release envelopes help. These change

the amplitude of the raw oscillator output over time to sound

more like an instrument. This is done by applying a fractional

multiplier to the original sample point returned by the wave

table oscillator. Having a release time from 100% volume to

0% means that a note will fade out smoothly when it’s turned

off. With the right ADSR curves and the correct wavetable, a

synthesiser can sound very similar to real instruments. More

information can be found at: bit.ly/1KgI9dp.

Synthesis theory

Above Here’s one cycle of a wavetable oscillator

Raspberry Pi Tips, Tricks & Hacks 55

Tips | Tricks | Hacks

 # generate more samples
 self.more_samples.set()

 def callback(self, in_data, frame_count,
 time_info, status):
 # Audio card needs more samples so swap the

 self.
 return (self. .tostring(),

.paContinue)

 def do_sample(self, int i):
 cdef int out_sample = 0
 # Go through each note and let it add to the

 for note in self.notes:
 if note.
 self.notes.
 else:
 out_sample += note.next_sample() >> 3

 self.newbuf[i] = out_sample

 def (self):
 cdef int i

 while self.exit.is_set() == False:
 # For each sample we need to generate
 for i in range(0 .BUFSIZE):
 self.do_sample(i)

 # samples
 self.more_samples.clear()
 self.more_samples.wait()

 def start(self):
 self.stream_init()

 t = threading.Thread(target=self.
 t.start()

 def freq_on
 n = Note(self. .SAMPLERATE,
 freq)
 print n
 self.notes.append(n)

 def
 # Set the ADSR state to release
 for n in self.notes:
 if n.freq == freq:
 n.adsr.state =

 def note_on(self, n):
 self.freq_on(self.midi_table.get_note(n))
 self.notes_on.append(n)

Full code listing (Cont.)

Step 11

Step 12

Python introduces a number of performance issues
compared to a native synthesiser implementation
that is written in C or C++. Cython has been used in our

implementation to try and mitigate these issues but it is

nowhere near enough. As a rough comparison, our expert

worked on a synthesis project targeting 100 Mhz ARM

processors that were programmed in C and could get

around 30 notes of polyphony, compared to three in this

implementation on a 900 Mhz ARM core.

A major issue is that the sound card uses 16-bit signed

integers to represent a sample. However, Python doesn’t

natively support this type. To pass the data to the audio

library it needs to be encoded from an array of integers into

a byte string. Then at the other end, the Python that talks

to the audio library will decode this byte string back into

an integer array. If it was written in C or another lower-level

language like C++ or Rust, the sample could be passed

almost directly to the audio hardware.

Another issue is that Python has a large function call

overhead. In compiled languages, this can be optimised

out by compiling function calls in line with the caller

(effectively, copying the code from the function into the

caller). Variable access also has overhead because of all

the type checking required. There is also the overhead

of the garbage collector, which destroys

objects when there are no longer

references to them.

Performance
issues

A major issue is that the sound
card uses 16-bit signed integers to
represent a sample. However, Python
doesn’t support this type

Tips | Tricks | Hacks

56 Raspberry Pi Tips, Tricks & Hacks

Raspberry Pi Tips, Tricks & Hacks 57

Tips | Tricks | Hacks

Above Here’s one cycle of a wavetable oscillator

 def (self, n):
 self. .midi_table.get_note(n))
 self.notes_on.remove(n)

 def toggle_note(self, n):
 if n in self.notes_on:
 print “note {0 .format(n)
 self.
 else:
 print “note {0 .format(n)
 self.note_on(n)

class KBInput:
 def __init__(self, synth):
 self.synth = synth

 self.keymap = {‘a’ : 60, ‘w’ : 61, ‘s’ : 62,
 ‘e’ : 63, ‘d’ : 64, ‘f’ : 65,
 ‘t’ : 66, ‘g’ : 67, ‘y’ : 68,
 ‘h’ : 69, ‘u’ : 70, ‘j’ : 71,
 ‘k’: 72}
 self.notes_on = []

 @staticmethod
 def getch():
 fd = sys.stdin.
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(fd)
 ch = sys.stdin.read(1)
 :
 termios.tcsetattr(fd, termios.TCSADRAIN,
 old_settings)
 return ch

 def loop(self):
 while True:
 c = self.getch()

 if c == ‘q’:
 self.synth.stop()
 return

 if c in self.keymap:
 n = self.keymap[c]
 self.synth.toggle_note(n)

if __name__ ==
 s = Synth()
 s.start()
 kb = KBInput(s)
 kb.loop()

Full code listing (Cont.)
Step 12

Step 13

14 Put it all together
The main function of the program creates an instance

of the synth class and then starts the audio stream and synth

loop thread. The start function will then return control to the

main thread again.

At this point we create an instance of the KB input class

and enter a loop that gets characters and toggles the

corresponding MIDI note on or off. If the user presses the

Q key, that will stop the synth and end the input loop. The

program will then exit.

15 Compile the code
Exit your editor and run the compile script by typing

the following command:

 ./compile.sh

This may take around 30 seconds, so don’t worry if it isn’t

instant. Once the compilation has fi nished, execute the synth.

bin command using:

 ./synth.bin

Pressing keys from A all the way up to K on the keyboard will

emulate the white keys on the piano. If you press a key again

the note will go off successfully. Above The simple user interface. Notice how the step size in the wavetable varies with frequency

12 Turn on notes
There are both note_on/off and freq_on/off functions

that enable either MIDI notes or arbitrary frequencies to be

turned on easily. Added to this, there is also a toggle note

function which keeps track of MIDI notes that are on and turns

them off if they are already on. The toggle note method is used

specifi cally for keyboard input.

13 Add keyboard input
For keyboard input, we needed the ability to get a

single character press from the screen. Python’s usual input

code needs entering before returning to the program. Our

code for this is inspired by: https://code.activestate.com/

recipes/577977-get-single-keypress.

There is a mapping of letters on a keyboard to MIDI note

numbers for an entire keyboard octave. We have tried to

match the letter spacing to how a piano is laid out to make

things easier. However, more innovative methods of input are

left as an exercise to the reader.

11 Synth loop
The start method of the synth class initialises the

audio hardware and then starts the synth_loop method in its

own thread. While the exit event is set to false, the do_sample

function is called.

The do_sample function loops through the notes that are

currently turned on and asks for a sample from each one. These

samples are shifted right by three (ie divided by 2^3) and added

to out_sample. The division ensures that the output sample

can’t overfl ow (this is a very primitive method of adding notes

together, but it works nonetheless).

The resulting sample is then put in the sample buffer. Once

the buffer is full, the more_samples condition is cleared and

the synth_loop thread waits to be notifi ed that the buffer it

has just built has been sent to the audio card. At this point, the

synth can fi ll up the buffer that has just fi nished playing and

the cycle continues.

58 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Pair up two Raspberry Pis to create a live
networked sensor display

Networked sensor display
with Pimoroni Scroll pHAT

We are going to create a networked sensor display with the
Pimoroni scrollphat. We’ll take a look at the hardware, what’s

included and how to install the required Python libraries. Then

we will tour the library’s source code and code some examples

that have been contributed by the open-source community

through GitHub. Once we are familiar with the library, we will

go on to set up our chosen sensor on the fi rst Raspberry Pi and

connect the screen to our Pi Zero. We’ll learn about how to use

Redis (an open-source pub-sub noSQL database).

Redis is our connective tissue, publishing events that our

Zero will subscribe to and then display on the Scroll pHAT. This

saves on the complexity of implementing a web-server or going

even lower level with sockets. Don’t worry if you do not have a

Scroll pHAT – we’ve thought of that and provided a version of

the code that displays text on your SSH terminal instead.

01 First look at the Scroll pHAT
The Scroll pHAT is one of a number of pHATs (hardware

attached on top) which appeared at around the launch of the

Raspberry Pi Zero. Pimoroni’s device costs £10 when ordered

directly from the website and is also available in kit form, which

is excellent value considering that the price of an empty PCB can

be around £5. For your money you get an eye-catching PCB in a

black fi nish with 11 rows of 5 LEDs pre-mounted. At the heart of

the pHAT is ISSI’s IS31FL3730 LED Matrix driver. The LED driver

speaks the I2C protocol, making it capable of connecting to

almost any micro-controller such as the Arduino.

What you’ll need
 Article’s Github repository

(http://github.com/alexellis/

rpi-display)

 Two Raspberry Pis

 Pimoroni scrollphat

(optional)

 Soldering iron and solder

Raspberry Pi Tips, Tricks & Hacks 59

Tips | Tricks | Hacks

02 Solder the 40-pin header
Pimoroni’s device is almost ready to go, but they have

left some soldering down to us. We get to solder the header

pins, choosing whether to go with a vertical header or a

90-degree version (provided). Another option is to use a single

set of pins and solder the Scroll pHAT directly on top of the Pi

Zero making for a cute, low-profi le sandwich of tech. Whichever

option you go with, make sure that you have a well-ventilated

environment with good lighting. We fi nd that a fl ux pen and thin

solder helps, too.

03 Connect the hardware
Carefully line up the Zero and the Scroll pHAT and

then gentle push them together. Then turn on the power and

boot into Raspbian. From here you should open a terminal

window or ssh connection and type in the following to invoke

the automatic installer:

 curl -sSL get.pimoroni.com/scrollphat | bash

Pro tip: If running a bash script directly over the internet

scares you, then you are not alone: you can always open the

script in a web browser to read through the setup process.

04 Run your fi rst example script
Now that you have the library installed, clone the git

repository, and look in the examples folder.

 git clone https://github.com/pimoroni/scroll-phat
 cd scoll-phat/examples/

The author has contributed several code examples, try out the

progress.py example with: sudo python progress.py. You should

see an animation reminiscent of the classic snake game. There

are a dozen examples to try, like scrolling system uptime, a

count-down, the UK weather and a binary clock.

05 Light up pixels with the library
After importing the scrollphat module we can create

animations with a combination of set_pixel(), update() and

time.sleep(). Try the following to blink the fi rst LED.

The initial batches of

the Pi Zero sold out

almost as quickly

as they were made

available, but there’s

hope. The Raspberry

Pi foundation

announced in March

that a purchase

order has been

placed for another

150,000 Pi Zeros

to be produced. So

now is a perfect time

to start stocking

up on accessories

and add-on boards

ready for your new

Pi Zero. Armed

with a USB battery

bank, Wi-Fi dongle

and the Scroll pHAT

board you could take

your remote sensor

almost anywhere.

Pi Zero is
making a
return!

 import scrollphat
 scrollphat.set_brightness(2)
 while(True):
 scrollhat.set_pixel(0, 0, True)
 scrollphat.update()
 time.sleep(0.5)

 scrollhat.set_pixel(0, 0, False)
 scrollphat.update()
 time.sleep(0.5)

Use scrollphat.set_brightness() to pick an appropriate

brightness for the ambient lighting.

06 Display a short message
To output a static message use write_string(text)

followed by update(). =This will load a basic font where each

letter takes up around 5x3 pixels, allowing for approximately

three letters.

 scrollphat.write_string(“FOO”)
 scrollphat.update()

The count.py example uses write_string to count up to a

given number, like a stopwatch. So, what if your string doesn’t

fi t into three characters?

07 Display longer messages
For longer messages, we can call the scroll() method.

Each call to scroll() will move the text to the left by one pixel.

So to move the letter ‘f’ off the screen call scroll() three times

– or in a while loop such as:

 scrollphat.write_string(“foo”)
 while(True):
 scrollphat.scroll()
 scrollphat.update()

08 Clear the screen
Clearing the screen can be done in two ways; either by

calling the set_pixel(x, y, False) method to turn off individual

60 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

The Scroll pHAT’s

Python library is

open-source and

available under the

GPL on Github which

means you can

fork the repository.

Forking means you

can make changes

in your own account

and then raise a pull-

request (PR) which

alerts Pimoroni’s

developer Phil to

come and have a

look at your work

and merge it into the

main project. The

author’s fi rst PR was

#13 in December. It’s

a great way to start

contributing to an

open-source project.

Contribute
to the
scrollphat
library

pixels or by calling scrollphat.clear() and scrollphat.update()

afterwards. You will see a pattern in many of the examples:

 scrollphat.write_string(“foo”)
 try:
 while(True):
 scrollphat.scroll()
 scrollphat.update()
 except KeyboardInterrupt:
 scrollphat.clear()
 scrollphat.update()

For a good example of this, look at the uptime.py fi le.

09 Connect a sensor
We will now connect a sensor to our sensing RPi, this

can be any sensor with a HIGH/LOW GPIO output or something

more complex as long as it has a Python library available.

The diagram generated through Fritzing shows a PIR passive

infrared receiver – these can be bought for £1-3 and trigger due

changes in heat signatures such as those produced by people or

animals. Connect 5v to 5v, GND to GND and then the signal to pin

17 for example.

10 Install Python libraries
On both Pis, install the redis python library, followed

by redis itself. Redis is much more than a key/value pair store –

it is capable of pub/sub, ranking, effi cient set-based operations

and is really fast on the Pi. The sensing Pi will interact with the

display Pi’s redis instance over your Wi-Fi network on TCP port

6739. In our example we will make use of pub/sub and a key/

value pair.

 sudo pip install redis
 sudo apt-get install redis-server

On the display Pi, confi gure the service to start on boot-up:

 sudo systemctl enable redis
 sudo systemctl start redis

11 Redis commands
The sensor.py software increments a counter for each

minute of inactivity, but if the PIR senses motion it will reset

the value back to zero.

Whenever the counter changes, a message is published which

the display unit can use to know when to refresh its output. You can

also use the bundled redis-cli tool to test out these commands.

 * INCR <key> <amt> increments a key by one, or
the amount given

 * DEL <key> removes and zeros a key
 * PUBLISH <channel> sends a message onto a
channel

 * SUBSCRIBE <channel> subscribes to a channel for
new messages

12 Redis library basics
To create a client, import the redis library and then

call redis.StrictRedis, passing in the IP address of the server

through the ip_address variable. Methods such as incr can

then be invoked on the client for as long as you need it.

 >>> import redis
 >>> client = redis.StrictRedis(ip_address)
 >>> client.incr(‘counter’, 10)
 >>> client.incr(‘counter’, 1)
 >>> print(str(client.get(‘counter’)))
 >>> print(“Counter: {}”.format(client.get(‘counter’)))
 Counter: 11

Raspberry Pi Tips, Tricks & Hacks 61

Tips | Tricks | Hacks

We opted to create redis_controller.py; you will fi nd this used

in both sender.py and display.py.

13 Redis pub/sub
Due to the way redis works, a separate client is

required for publishing and subscribing to a channel.

14 Prepare the demonstration
Start the sensor software:

• Check that the redis server has started with systemctl start

redis

• Clone the github repository and CD into the folder rpi-display

• Type in sudo python sender.py

Start the display software:

• Clone the github repository and cd into the folder rpi-display

• Type in sudo python display.py

If you are testing or do not have a Scroll pHAT then edit

display.py and change “from pixel_scrollphat_display” to

“from terminal_display”.

15 Try out the demonstration
Now that you have started both parts of the

demonstration, point the PIR away from you and wait. As each

minute passes, you should see dots accumulating on the

screen of the Scroll pHAT just like a game of Tetris. When you

have at least one dot on the screen, get up and walk into the

pathway of the PIR – clearing the screen.

16 Show data from other sensors
The sender.py example can also be adjusted to take

information from other sensors, such as the ambient temperature

of the Pi’s CPU. Instead of calling INCR once, you could call DEL and

then INCR once for each degree before publishing the result.

If you fi nd that the dot display does not make sense, or that

your output needs to cover more than 5x11 pixels, you can use

numeric_scrollphat_display.py as your display which can

show a number between 0-999 without the need for scrolling.

17 Wrapping up
We have now learnt how to use the Scroll pHAT Python

library to display individual pixel animations, static text and

scrolling messages. We leveraged Redis as a server and a

client to provide our networking; here are some ideas for you:

• Use the PIR as a silent door bell, having it fl ash the screen

when it detects motion

• Run a Pi web-server and display its CPU usage on the screen

• Connect a magnetic sensor to a stationary bike trainer, and

show the wheel-speed through the screen

It’s now up to you decide where to take it. Have fun!

Tricks
There are all sorts of
electronic gadgets lying
around your home which
can be brought back to life
with a little bit of effort
– take old videogame
controllers for instance

64 Xbox arcade with
 a Pi Zero
• Use an old Xbox controller

• Play retro games on a Pi

• Learn soldering and assembling skills

• Recycle household items

64

Raspberry Pi Tips, Tricks & Hacks 63

72 Zero-Powered Wearable

76 Build a Raspberry-Pi Minecraft console

82 Create a Minecraft Minesweeper game

86 Control lights with your Pi

90 Stream internet TV to your

Raspberry Pi

92 Underwater drone

94 Anonymise your web traffic with a Pit

Tor router

98 Create your own circuit diagrams

with Fritzing

102 Make a Pi 2 desktop PC

106 Set up a multi-room

sound system

Tor router

76 Build a Raspberry-Pi Minecraft console

86 Control lights with your Pi

sound system

 console

 game

 console

 Zero-Powered Wearable

 Build a Raspberry-Pi Minecraft

 Create a Minecraft Minesweeper

 Control lights with your Pi

 Stream internet TV to your

 Anonymise your web traffic with a Pit

 Create your own circuit diagrams

 Make a Pi 2 desktop PC

 Set up a multi-room

 Build a Raspberry-Pi Minecraft

 Control lights with your Pi

 Build a Raspberry-Pi Minecraft

 Create a Minecraft Minesweeper

 Anonymise your web traffic with a Pit

 Create your own circuit diagrams

 Build a Raspberry-Pi Minecraft

 Zero-Powered Wearable

 Build a Raspberry-Pi Minecraft

 Create a Minecraft Minesweeper

 Control lights with your Pi

 Stream internet TV to your

 Underwater drone

 Anonymise your web traffic with a Pit

Tor router

 Create your own circuit diagrams

102

106

Tor router

 Build a Raspberry-Pi Minecraft

 Control lights with your Pi

 Zero-Powered Wearable

 Build a Raspberry-Pi Minecraft

 Create a Minecraft Minesweeper

 Control lights with your Pi

 Stream internet TV to your

Raspberry Pi

 Underwater drone

 Anonymise your web traffic with a Pit

Tor router

 Create your own circuit diagrams

with Fritzing

 Make a Pi 2 desktop PC

 Set up a multi-room

sound system

Tor router

 Build a Raspberry-Pi Minecraft

 Control lights with your Pi

sound system

Raspberry Pi Tips, Tricks & Hacks Raspberry Pi Tips, Tricks & Hacks

Control the
ambience

Draw circuit
diagrams

Play
Minecraft

on a Pi

Minecraft means many
things to many people, and
to Pi users it’s supposed
to mean education. Not
everyone knows you can
still have fun and play it as
you normally would

9886

76

Tips | Tricks | Hacks

64 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Make a self-contained arcade machine out of
old bits of kit, a spare Xbox pad and a Pi Zero!

Create your own
Xbox Zero arcade

The Raspberry Pi Zero is tiny, ridiculously tiny. It’s a wonderful,

impressive piece of tech, but we can’t help wondering – because

we’re terribly serious adults, honestly – where can we stuff the

Zero for maximum fun? It’s small enough to be hidden in a variety

of household objects in order to enhance their capabilities.

Whatever you can fi nd to fi t it in, you can turn into some

kind of smart machine. Okay, wiring it in to your vacuum

cleaner in the hope of making an ersatz Roomba is

probably a little tricky – but there are all sorts of

electronic gadgets lying around your home

which can be brought back to life with

a little bit of effort. Take old game

controllers. If you’re anything

like us you’ve probably got

a couple of boxes full

of old computer

equipment

you just

can’t bear to throw away – an Atari Jaguar

that hasn’t been touched since the 90s,

a Sega Dreamcast which you’re sure

you’ll plug in again one day, an old Xbox

that lies languishing since you picked up

something bigger and better. Turns out it

actually was useful to keep them around

– it’s time to bring these old systems back

to life!

We’re going to show you how to gut an

old videogames controller, replace its

innards with a Raspberry Pi Zero, and

then load it up with a treasure trove of

retro games. From start to fi nish, this

project should take you under an hour to

complete – and then you’ll be able to load

up the ROMs you legally own on your new

console and enjoy them from the comfort

of your sofa.

Raspberry Pi Tips, Tricks & Hacks 65

66 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

When taking apart

electronics, keep

a few small bowls

or containers

nearby. Put each

type of screw in

its own separate

container so you

don’t accidentally

mix them up. With

the Xbox controllers,

you’ll fi nd that the

buttons especially

have a habit of

rolling away from

you, so stash them

somewhere safe

as well. Keep track

of any random bits

of plastic or rubber

which may be useful

in re-assembling.

Lots of little
bits

Wire cutters

Craft knife

Isopropyl
alcohol swabs

BluTak

Micro SD
card

Original Xbox
controller

Cross-head
screwdriver

Micro USB-
OTG cable

Raspberry Pi
Zero

Electrical tape

Mini HDMI
cable/adapter

2A micro USB
power supply

What you’ll need

01 Gather your equipment
While the Zero doesn’t take up much space,

videogame controllers are often stuffed full of delicate

electronics. The trick here is to fi nd a games controller which

has enough space inside for the Zero. We’re going to be using

the original Xbox controller, nicknamed The Duke. If you don’t

have one to hand, they can be picked up for a couple of quid

from most second-hand electronics shops.

If you can’t fi nd one, you can use newer USB game pads

that are designed to look like controllers for classic systems

like the SNES and Mega Drive. Make sure you choose a

controller that has enough buttons for the games you want to

play – some classic fi ghting games, for example, really can’t

be played on a two-button NES controller!

02 Warning!
Working with electrical items and sharp objects can

be dangerous. You risk damaging yourself or, worse, breaking

your toys. Please ensure everything is unplugged from

electrical supplies before attempting this project. As with any

electronics projects, you should also take care to fully ground

yourself before playing around with sensitive components –

the static electricity from your body can ruin them. Anti-static

wrist straps or a few taps on a radiator should do the trick.

03 The build
See the image to the right – this is the controller we’ll

be working with. It has dual joysticks, six buttons, a D-Pad and

two triggers – it’s compatible with most retro games systems.

04 Fitting
If you’re using a different controller, double-check

STEP

05

STEP

06

Raspberry Pi Tips, Tricks & Hacks 67

Tips | Tricks | Hacks

that the Pi is likely to fi t inside before you crack it open. As

you can see, the Pi nestles neatly between the triggers of this

controller – the original Xbox controller is one of the largest.

05 Unscrewing
The controller is held together by half a dozen cross-

head screws. Be careful when opening the case as the

buttons and rubber contacts are loose within the controller –

they will spill everywhere!

06 Opening
With the shell removed, you should be able to undo

the screws holding the main circuit board in place. There are

also a couple of connectors which power the vibration motors

– gently unclip them in order to completely remove the board.

You might fi nd it easier to use a pair of pliers for this – just be

very gentle as you pull!

07 Gently does it
You can see for yourself just how well the Pi fi ts here;

it can be squeezed under the memory card slot. If you want

to hold it fi rmly in place, use some BluTak as a temporary

solution. Also, if you’re using an older controller, it’s worth

giving it a bit of a clean. Remove the rubber contacts and

gently swab under them using the isopropyl alcohol swabs.

08 Cut to fi t
Depending on the model of controller, you may fi nd

that the Pi blocks one of the internal plastic struts. The plastic

is soft enough that a craft knife will easily cut it down to size,

though. Start with small strokes, shaving off a tiny bit at

a time until you have enough room. Make sure the plastic dust

is cleaned out before you reassemble the controller. If you

have a can of compressed air, you can use it to easily blow

away the shavings.

09 Connecting it up
If you’re using a controller that has a regular USB port

on it, you can just plug it into the Pi via a USB OTG converter.

If you’re using the original Xbox Controller, it’s slightly tricky.

Microsoft, in its infi nite wisdom, has decided that the original

Xbox should use USB – but with an incompatible plug design.

This means, in order to connect the controller to the Pi, we

need to do some wire stripping. Fun!

The wiring inside the Xbox controller’s cable uses bog-

standard USB wiring colours, so once you’ve chopped

the plugs off the controller and the OTG cable, it’s pretty

straightforward to connect them together.

10 Wiring
Strip the wires by a couple of centimetres and then

connect them together. You should have Red, Green, White,

and Black. The Xbox cable also has a Yellow wire which you

can ignore. It is worth noting at this point that you need to

be sure that you have a USB data transfer cable and not just

a plain old power cable – the former will look like the photo

below, but power cables will be missing the two data wires.

With the wires stripped, we temporarily used regular sticky-

tape to make the connections between the OTG cable and the

controller – for a more permanent installation, you can use

electrical tape or simply solder the wires together.

STEP

08

STEP

10

68 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

11 Insulation
One thing to note: you’ll need to insulate the bottom of the

Pi against all the contacts on the controller. For this quick hack,

we’ve used some of the cardboard packaging – but any non-

conductive material will do.

From there, it’s as simple as screwing the case back together.

Make sure that the controller’s buttons and joysticks don’t slip

out of alignment. Keep track of which coloured buttons go where

and you should be fi ne.

12 Wiring up
The Pi will need three wires connected to it in order to

work. The controller cable needs to be connected to the USB

OTG port. An HDMI cable goes from your TV to the mini HDMI

port on the Pi. Finally, a 2A micro USB power supply needs to be

plugged into the Pi’s power socket. We’ve used a standard mobile

phone charger, but you can use a USB battery pack if you want to

reduce the number of wires trailing around your room.

STEP

12

USB Wiring
The older USB 1.0 and 2.0 cables have fewer wires than the
newer 3.0 – here’s a quick guide

White This wire is one of two used for
differential data signals. This white wire is
the positive component and the green wire
is the negative one

Red The red wire is one of two handling
power. This one is a 5V power line that
provides voltage to the circuit

Green The circuit can get the difference
between the two data signals rather than
between a single wire and ground – it’s a
more effective transmission

Black This is the other wire associated
with the power – the ground wire, which is
the counterpart to the 5V wire

Yellow USB mini/micro cables will also
have an additional wire that isn’t required
for our particular project

Tips | Tricks | Hacks

13 A word about power
You might be wondering whether

it’s possible to get the HDMI cable

to supply power from the TV to the

controller. Sadly, the HDMI specifi cation

doesn’t permit power to fl ow in that

direction. If your TV has a USB socket on

it, you could use that to supply the Pi with

power – just make sure the socket itself

is powerful enough. The Pi needs at least

1 Amp, and ideally 2 Amps. Many TVs will

only output 500mA which isn’t enough to

run the Pi.

14 Let’s play!
Okay! It’s looking good – you’re

nearly ready to play. The next step is to get

some emulation software on this thing!

Second-hand stores

like CEX or GAME

often have some

older, obsolete

consoles and

accessories out of

public view, as they

aren’t particularly

high-selling these

days. It’s worth

asking the staff what

they have if you can’t

see what you need

on display. Some

charity shops also

have old consoles

for sale. Failing that,

local car boot sales

or simply asking your

gamer friends are

both excellent ways

to grab inexpensive

controllers for all

sorts of consoles.

The right
controller

STEP

14

Raspberry Pi Tips, Tricks & Hacks 69

70 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Left RetroPie can be
restored straight to
SD if you don’t need
Raspbian as well

Bottom left If you
see a splash screen
like this when you
power on again, the
installation worked!

Installing and configuring the
RetroPie emulator
What good is hardware without software? It’s not as diffi cult as you might think to run
retro software through an emulator

Right, you’ve got your Pi safely ensconced in a controller –
all you need now are some videogames to play! We’re going

to be using the RetroPie emulator. By the end of this tutorial,

you’ll be able to play games directly from your Raspberry Pi,

provided that you legally own the ROM fi les. It’s as easy as

installing the software onto your SD card and then copying

across any games that you want to play. If you’ve already

got Raspian installed on your Pi, you can install RetroPie

alongside it – or you can dedicate the whole disk to the

software.

01 Install RetroPie inside Raspbian
If you’ve already started using your Pi and want to add

RetroPie to it, you’ll need to install the software from GitHub.

The latest instructions can be found at github.com/RetroPie/

RetroPie-Setup.

Open up a terminal on your Pi (for example, by SSHing into

it from another machine, or by logging in directly to the Pi).

Update your repositories and make sure the latest version of

the Git software is installed:

 sudo apt-get update
 sudo apt-get upgrade
 sudo apt-get install git

Download the latest version of the RetroPie setup script:

 git clone --depth=1 https://github.com/RetroPie/
RetroPie-Setup.git

If you’re security-conscious, it’s a good idea to check what

the script does before running it. Once you’re ready, you can

install it by changing into the correct directory and executing

the script:

 cd RetroPie-Setup
 sudo ./retropie_setup.sh

The script will take several minutes to run, depending on the

speed of your internet connection. It may ask you for permission

to install extra software that is needed – you should allow this.

Once fully installed, you will need to reboot your Pi:

 sudo reboot

RetroPie can now be run by typing emulationstation. We’ll come

on to configuring your setup in just a moment.

02 Install RetroPie onto a blank SD card
If you want your Raspberry Pi Zero to be used solely as

a RetroPie machine, this is the choice for you. Be warned: it will

completely wipe a micro SD card, so if you’re using one you’ve used

before, make sure you back up any important data before starting.

Download the latest version of the software from

http://blog.petrockblock.com/retropie/retropie-downloads.

Make sure you download the correct SD card image for your

machine – the image for the Raspberry Pi 2 is not compatible with

the Raspberry Pi Zero. Download the Standard version (not the

BerryBoot version). The download is an 800MB .gz file. Unzip it and

extract the .img file, which will be around 2.6GB. You’ll now need

to write this image file onto your micro SD card. This is done in the

same way that you would install a normal Raspberry Pi image onto

a card. There are slightly different instructions for Linux, Mac as

well as Windows.

03 Linux
Use the Disk Manager to select the image file and the

micro SD card. Follow the on-screen instructions until the image

has been fully written to the card.

04 Mac
Download the ApplePi Baker from www.tweaking4all.

com/hardware/raspberry-pi/macosx-apple-pi-baker. Once it is

installed, you can select the image file and the micro SD card.

Follow the on-screen instructions.

An emulator is

software which

lets your computer

pretend to be a

different sort of

computer. It will

allow a Raspberry

Pi Zero to run

software originally

designed for the

Sega Mega Drive,

or Nintendo N64,

old DOS-based

PCs, etc. Emulators

aren’t without their

problems, though –

it’s nearly impossible

to perfectly recreate

a games console

in software. Keep

in mind that older

games may have

bugs ranging from

minor sound and

graphical glitches to

full-blown crashes.

What is an
emulator?

Tips | Tricks | Hacks

05 Windows
Download the Win32 DiskImager from http://

sourceforge.net/projects/win32diskimager. Once installed,

you can select the image fi le and the micro SD card. Follow

the on-screen instructions until the image has been fully

written to the card.

06 Confi guring
Right – you’re almost ready to play. Put the micro SD

card into the Raspberry Pi Zero, hook up the controller USB

cable and the HDMI cable. Finally, plug the Pi into the power. It

should boot up automatically and, after a few seconds, you’ll

be greeted with a confi guration screen.

RetroPie should automatically detect any connected USB

game pads and step you through setting up the buttons. Once

you’ve fi nished, you’ll be presented with a screen showing all

the choices you made.

07 Set up the disk
Before we get to playing any games, we need to make

sure that RetroPie is able to use all the space on the micro

SD card. This will allow you to store ROMs and save your

games. Select “RetroPie” from the menu. You’ll be presented

with several confi guration options. Select “Raspberry Pi

Confi guration Tool RASPI-CONFIG”

You can come back here later if you want to change

the default username and password; for now just use the

controller to select “Expand Filesystem”. Once highlighted,

press right until the “Select” button is highlight. Click on it.

After a short delay, you will see a success screen – press

OK and you’ll be taken back to the confi guration screen. Press

right until “Finish” is highlighted, then click on it. You should

now reboot your Raspberry Pi.

08 Adding ROMs
The fi nal step is adding new ROMs. Once you’ve

legally purchased and downloaded ROMs from the internet,

you’ll need to copy them onto the micro SD card.

ROMs are stored in a separate folder for each system. So,

for example, you need to place your Sega Master System

ROMs in ~/RetroPie/roms/mastersystem/. Once you’ve

installed ROMs, the systems will appear in the main menu.

You’re now ready to play!

09 Playing
Once booted, you’ll see a menu with all the available

games systems on it. Some emulators will only show up once

game ROMs for that system are installed. Scroll until you fi nd

the game you want to play – then let rip!

You can always return back to RetroPie if you want to

change any of the confi guration options, or update the

software. And that’s all there is to it! Time to sit back and play

some games. If you want to fi nd out more about the RetroPie

software, visit http://blog.petrockblock.com/retropie.

Many older games

have, effectively,

been abandoned.

The original

publishers are

defunct and it’s not

clear legally who

owns the rights.

There are several

sites which claim

to have permission

from the original

creators to distribute

their games – but it’s

not always easy to

tell how legitimate

they are. You should

ensure that you

either buy legitimate

copies or download

from organisations

with the legal right to

distribute them.

Where do I
get ROMs?

Emulation
on Raspberry
Pi, Pi 2 & Pi 3

bit.ly/24poLHd

Tips | Tricks | Hacks

Harness the Twitter API to trigger displays in an LED-laden
piece of clothing when set tweets are received

Make an interactive,
Zero-powered wearable

Wearable tech is an ever-growing industry, bursting with
smart watches, fitness gadgets and pulse-rate necklaces.
For many, this technology is nothing new; enthusiasts have long

created their own wearable versions. Clothes that light up on

contact, masks that change voices and weapons that glow! In

this tutorial you will use your old Christmas LED lights, Python

and the Pi Zero to modify a hat that lights up when you receive a

specifi c tweet from your timeline. The Pi Zero is the perfect size

and can be embedded into the clothing. You can customise the

project for your own wearable tech, perhaps shoes that light up

or a pair of gloves or a jumper that responds to the weather.

01 Sign up for Twitter API keys
To interact with Twitter, you fi rst require consumer and

authorisation keys which are available from the Twitter API site.

If you already have these, you can jump to Step 04, but if not we’ll

take you through it all here. Head over to https://apps.twitter.

com sign in with your regular Twitter username and password.

Select the ‘create a new app’ button. Fill in the details for your

app as required, then tick and confi rm that you accept the

terms and conditions.

What you’ll need
 Pi Zero

 USB portable power supply

 USB Wi-Fi dongle

 Micro USB convertor

 Hat or other clothing of

your choice

 Old LED Christmas lights

Left You can adapt
this setup to any kind
of clothing, which is
awesome for cosplay

Full code

FileSilo.co.uk

/bks-B38

72 Raspberry Pi Tips, Tricks & Hacks

Raspberry Pi Tips, Tricks & Hacks 73

Tips | Tricks | Hacks

02 Permission settings
On completion of this, you will be taken to the app

overview page. Here you need to select the ‘Access Level

Permission’ for your app. (This may require you to register a

mobile phone number, which is completed in your regular Twitter

account settings page.) There are three permission settings:

Read: This reads tweets from your timeline.

Read and write: This enables you to read tweets and write/send

tweets back to your timeline.

Read, write, direct: This permission setting permits you to send

and access your direct messages from your timeline.

For these sorts of projects, you will need to set the permission to

‘Read and write’.

03 API keys
Now set up your ‘keys’. These are the codes that are

used to access your Twitter account via Python. Click the

‘Keys and access token’ page. You will be presented with your

consumer key and consumer secret. Copy these down as they

are required in step seven.

At the bottom of the page is the ‘access tokens’ that are

generated. Simply press the button and this will generate them.

Again, note these down for use in Step 07. Each time you press

the button, a new set of keys will be created; this is useful if they

become compromised.

05 SSH into the Pi Zero
Now the Wi-Fi is operational, download and install

an SSH client such as Putty onto your laptop. Run Putty, enter

the IP address of your Pi Zero (usually you can use the default

name raspberrypi). Enter your user name and password when

prompted and you will be presented with the terminal window.

This can be used to write code, run code and set up the project.

04 Set up the Wi-Fi
The Pi Zero is the perfect size for embedding into

projects and hacks. When using it within clothing it is unlikely

that you will have a display or screen. A simple method to access

your Pi is via SSH (secure shell) – this requires Wi-Fi access. An

easy way to set this up is to hook up the Pi Zero to a monitor, boot

it up, select the Wi-Fi icon in the top-right corner and enter in

your pre-shared WEP key. Save the settings and each time your

Pi Zero starts up, it will attempt to connect to this Network.

The Pi Zero can be

tethered to a mobile

phone to ensure

that the Hat is

mobile-interactive

when out and

about. To maintain

the connection,

it is advisable to

disable the Wi-Fi

management.

To set this up type:

sudo nano /etc/

network/interfaces

Then add the line:

wireless-power off

Save the fi le and

reboot the Pi.

Tethering
the Zero

Left We’ll need
to register our
application with
Twitter in order to
use it in our hat

06 Install Tweepy
You have now registered your Twitter app, acquired the

consumer keys and tokens, and have access to your Pi. The next

step is to download Tweepy, the Python Twitter API. In the LX

Terminal type:

 sudo apt-get install python-setuptools
 sudo easy_install tweepy

… or…

 sudo pip install tweepy

Reboot your Pi Zero typing, sudo reboot. You will then need to

SSH in again. You can now use Python code to interact with your

Twitter feed.

74 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

10 Add the modules
Now you have both Twitter and your LEDs ready to go,

return back to the Twitter test program you created in Step 07.

At the top of the program, import the required modules to enable

the Python program to interact with Twitter and control the LEDs

(lines 3 to 6).

The final line adds a 15-second delay to the start of the

program. This is to ensure that the Pi Zero has sufficient time

to connect to the Wi-Fi before it attempts to connect to Twitter,

otherwise you can receive an authorisation error.

 import os
 import time;
 import sys, subprocess, urllib, time, tweepy
 import RPi.GPIO as GPIO

 time.sleep(15)

11 Check for a key word
To ensure that a user actually meant to turn on the

LEDs, the program looks for an exact tweet. For example,

@ada_lovelace ON. In your program, add the line tweet_to_

check.find(“@Your_Twitter_ID ON”) (line 31) which will return

the numerical position of the phrase. This will always be zero as

the phrase starts from position zero. If the value is not zero then

the exact phrase has not been sent. A simple if statement can

be used to respond to the value (line 34):

 does_the_tweet_contain_key_word = tweet_to_check.
find(“@Test_User ON”)

You can set up the

Wi-Fi connection via

the SD card before

you boot up your Pi.

This involves a few

more steps than the

GUI interface but

will give you some

understand of the

different elements

of information

required to connect

to the Wi-Fi. Check

out this forum guide

from the Raspberry

Pi website:

https://www.

raspberrypi.org/

forums/viewtopic.

php?f=26&t=34127.

Add Wi-Fi
without a
display

12 Get user name
Once the program has checked that a Twitter user

has tweeted the ‘phrase’, the next stage is to retrieve the

user’s Twitter ID (line 38). This enables you to message them a

templated confirmation that they have triggered the LEDs. Use

the line user = str(tweet.user.screen_name) to add the ID to a

variable called user.

08 Prepare the LEDs
There are two ways to power the LEDs depending on the

item of clothing you are modifying. For example, if using a hat,

you may want to avoid a battery pack as it will add extra weight.

Take one of the wires and cut it in half between the LED and the

battery pack. Solder to each end a male-to-female jumper wire.

09 Test the LEDs
Next, check that the LED and wiring are working by

using the simple test program below. Create a new Python file

(sudo nano led_test.py) and add the code below. Save the file

and type sudo python led_test.py to test the LEDs. They will

turn on for ten seconds and then off again. Replace the GPIO pin

numbers below with the ones you are using:

 import RPi.GPIO as GPIO
 import time
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(9, GPIO.OUT)

###Turn the lights on
 GPIO.output(9, GPIO.LOW)
 time.sleep(10)
###Turn them off
 GPIO.setup(9, GPIO.HIGH)

07 Connect to Twitter
To stream your tweets, you need to authorise a

connection using your consumer keys and the access token

that you set up in Step 03. Create a new Python file – this can

be completed at the command line by typing sudo nano name_

of_file.py. Add the lines of code below, which will stream tweets

down to your Pi Zero. Line nine listens for tweets to your timeline

and then tweet_to_check = tweet.text grabs each tweet. Use

print tweet_to_check to print the tweet. Save the file using

Control + X, then to run the program type sudo python name_

of_file.py. Test that it is working before moving onto Step 08. The

program will stream each of the tweets in your timeline and print

them out.

 import sys, subprocess, urllib, time, tweepy

 consumer_key= ‘xxxxxxxxxxxxx’
 consumer_secret= ‘xxxxxxxxxxxxxxxx’

 access_token= ‘xxxxxxxxxxxxxx’
 access_token_secret= ‘xxxxxxxxxxxxxxxx’

 auth = tweepy.OAuthHandler(consumer_key, consumer_
secret)

 auth.set_access_token(access_token, access_token_
secret)

 api = tweepy.API(auth)

 class Hat_Lights(tweepy.StreamListener):
 def on_status(self, tweet):
 tweet_to_check = tweet.text ##gets the tweet
 print tweet_to_check

 stream = tweepy.Stream(auth, Hat_Lights())
 while True:
 stream.userstream()

The Pi Zero can provide 3.3V or 5V – attach one of the wires to

provide power to the LEDs via, for example, GPIO pin 2, 4 or 9, and

then the other wire to another pin, such as pin 11. Or use a non-

power pin and a ground pin, with the power for the LEDs being

provided by the batteries. It is not advisable to use both as this

will quickly burn out the LEDs.

Below Here’s the
simple Fritzing
diagram for the
hat connections

Raspberry Pi Tips, Tricks & Hacks 75

Tips | Tricks | Hacks

15 Combine the parts of the message
Combine the two parts from the previous steps to create

your fi nal message, stored in a variable called fi nal_tweet using

this code: fi nal_tweet = “@%s” %(user), message (line 42).

The “@%s” %(user) adds the user’s Twitter ID to the message,

which ensures that your tweet will appear in their timeline.

Finally, send your tweet using the update code:

 api.update_with_media(pic, final_tweet)

16 Turn the lights on
This is same section of the code used in Step 09, which

switches the GPIO pin to low, creating a circuit and allowing the

current to fl ow through. This turns on the LED lights. Add a time

delay (line 46), so that they stay on for a short period of time

before breaking the circuit and then go off again: GPIO.setup(9,

GPIO.HIGH) (line 48).

###Turn the lights on
 GPIO.output(9, GPIO.LOW)
 time.sleep(10)
###Turn them off
 GPIO.setup(9, GPIO.HIGH)

17 Automatically start the program
Since the program is running on a Pi Zero and embedded

into the hat, it needs to start automatically when the power is

turned on. To enable the program to run at startup, type this

into the LX Terminal: sudo nano /etc/rc.local. At the bottom of

the fi le, add the fi le path of the program – for example, python

/home/pi/LED_Hat.py &. Don’t forget the & symbol at the end!

Reboot the Pi Zero and the program will start automatically. Pop

your hat on and get your followers to tweet at you!

14 Add a picture and message to the tweet
This step combines your reply, a picture and the ‘time’

from the previous step to create a fi nal message which is sent to

the Twitter user who triggered your lights.

Create a new variable called message and add the text and

the time: message = “You turned on the Hat!”, time_sent (line

40). Locate a suitable picture that you wish to send and also store

this as a variable: pic = ‘/home/pi/lights.jpg’ (line 37).

13 Find the time
If you send the same tweet multiple times, Twitter

assumes that you are a spam bot and will not permit the

message to be sent. To get around this, record the time that the

user triggered the LED lights and add the time to the message

(line 39). This also makes the tweets appear in real-time. To

retrieve the time that the interaction occurred, use:

 time_sent = time.asctime(time.localtime(time.time())
)

This will check the local time of your Raspberry Pi and save it

to the variable ‘time_sent’. (Ensure that your Pi’s clock is set

correctly before you start your program.)

import os
import time;
import sys, subprocess, urllib, time, tweepy
import RPi.GPIO as GPIO

time.sleep(10)

####TWITTER SECTION###

== OAuth Authentication ==###############
consumer_key= “xxxxxxxxxxxxxxxxx”
consumer_secret= “xxxxxxxxxxxxxxxxxxxxxxxxx”

access_token= “xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”
access_token_secret= “xxxxxxxxxxxxxxxxxxxxxxxx”

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

###CODE TO GET TWITTER TO LISTEN FOR Phrase###
class Hat_Lights(tweepy.StreamListener):
 def on_status(self, tweet):

 tweet_to_check = tweet.text ##gets the tweet
 print (tweet_to_check)

 ###Checks for tweets to @Your_Twitter_User_ID ###Add Yours
 does_the_tweet_contain_key_word = tweet_to_check.find(“@Your_
 Twitter_User_ID ON”)
 ###Change to use code to find key word###
 print does_the_tweet_contain_key_word

 if does_the_tweet_contain_key_word == 0:
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(9, GPIO.OUT)
 pic = “/home/pi/lights.jpg”
 user = str(tweet.user.screen_name)
 time_sent = time.asctime(time.localtime(time.time()))
 message = “You turned on the LED Hat!”, time_sent
 #print error_tweet
 final_tweet = “@%s” %(user), message
 #print type(error)

 ###Turn the lights on
 GPIO.output(9, GPIO.LOW)
 time.sleep(8)
 ###Turn them off
 GPIO.setup(9, GPIO.HIGH)
 #GPIO.output(10, GPIO.HIGH)lights_on()
 api.update_with_media(pic, final_tweet)

 else:
 print (“no lights”)

stream = tweepy.Stream(auth, Hat_Lights())

while True:
 stream.userstream()

Full code listingTo stream your tweets,
you need to authorise a
connection

bit.ly/24poLHd

76 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Create a full-functional, Pi-powered games
console that you can play Minecraft on and
learn how to program too

Build a Raspberry Pi
Minecraft console

Minecraft means many things to many people,
and to Raspberry Pi users it’s supposed to mean
education. Not everyone knows, though, that

you can still have fun and play Minecraft as you

normally would.

Using Raspberry Pi, it is also the cheapest way to

get a fully-functional version of Minecraft up onto

your TV. However, in its normal state, just being

on a TV isn’t the end of it. Using all the features

and functions of the Pi, we can take it to a state

more fi tting of a TV by making it into a hackable,

moddable Minecraft console.

In this tutorial, we will show you how to set it up

in terms of both software and hardware, how to

add a game controller to make it a bit better for TV

use, and we’ll even give you some example code on

how to mod it. Now, it’s time to get building, so head

to Step 1.

What you’ll need
 Raspberry Pi 2

 Latest Raspbian image
raspberrypi.org/downloads

 Minecraft Pi Edition
pi.minecraft.net

 Raspberry Pi case

 USB game controller

 (PS3 preferable)

3D-print this case! FileSilo.co.uk
/bks-B38

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 77

Tips | Tricks | Hacks

01 Choose your Raspberry Pi
Before we start anything, everything we

plan to do in this tutorial will work on all Raspberry Pi

Model Bs with at least 512 MB of RAM. However, Minecraft: Pi

Edition can chug a little on the original Model Bs, so we suggest

getting a Raspberry Pi 2 to get the most out of this tutorial.

02 Prepare your Raspberry Pi
Minecraft: Pi Edition currently works on Raspbian. We

recommend you install a fresh version of Raspbian, but if you

already have an SD card with it on, the very least you should do is:

 sudo apt-get update && sudo apt-get upgrade

05 X setup
If you have a fresh Raspbian install and/or you have

your install launch into the command line, you need to set it to

load into the desktop. If you’re still in the desktop, open up the

terminal and type in raspi-confi g. Go to Enable Boot to Desktop

and choose Desktop.

03 Prepare Minecraft
If you’ve installed Raspbian from scratch, Minecraft

is actually already installed – go to the Menu and look under

Games to fi nd it there ready. If you’ve just updated your version of

Raspbian, you can install it from the repos with:

 $ sudo apt-get install minecraft-pi

04 Test it out
If you’ve had to install Minecraft, it’s best just to check

that it works fi rst. Launch the desktop, if you’re not already in

it, with startx and start Minecraft from the Menu. Minecraft:

Pi Edition is quite limited in what it lets you do, but it does make

room for modding.

Above Give
Minecraft: Pi Edition

a quick test before
you start building

the console

07 Minecraft at startup
For this to work as a console, we’ll need it to launch into

Minecraft when it turns on. We can make it autostart by going

into the terminal and opening the autostart options by typing:

 $ sudo nano /etc/xdg/lxsession/LXDE-pi/autostart

06 Set up Python
While we’re doing set up bits, we might as well modify

Minecraft using Python for a later part of the tutorial. Open up

the terminal and use:

 $ cp /opt/minecraft-pi/api/python/mcpi ~/minecraft/

09 Turn off
For now, we can use the mouse and keyboard to shut

down the Pi in the normal way, but in the future you’ll have to start

turning it off by physically removing power. As long as you’ve exited

the Minecraft world and saved, that should be fine.

08 Autostart language
In here, you just need to add @minecraft-pi on the

bottom line, save it and reboot to make sure it works. This is a

good thing to know if you also want other programs to launch as

part of the boot-up process.

If you’ve installed Raspbian from
scratch, Minecraft is actually
already installed – go to the Menu
and look under Games to fi nd it

Minecraft: Pi Edition

hasn’t received an

update for a little

while, but it was

previously limited by

the original Model

B. Now with more

power, there may

be an update that

adds more to it, but

right now there’s no

indication of that. If

it does come though,

all you need to do is

simply update your

Pi with: sudo apt-get

update && sudo apt-

get upgrade.

Updates to Pi
Edition?

Tips | Tricks | Hacks

78 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks Tips | Tricks | Hacks

Aaron Hicks at

Solid Technologies

designed this

Minecraft case for

the Raspberry Pi

and shared it on

GrabCAD. We’ve

uploaded our slightly

modifi ed version to

FileSilo.co.uk along

with your tutorial

fi les for this issue.

All you need to do is

send the STL fi le to

a 3D printing service

– many high street

printing shops have

at least a MakerBot

these days – and

they will 3D-print the

case for you. It should

only cost around £15.

3D-print
a case

10 The correct case
In this scenario, we’re hooking this Raspberry Pi up to a

TV, which means it needs a case so that there’s less chance of

damage to the components from dust or static. There are many

good cases you can get – we are using the Pimoroni Pibow here

as you can mount it to the back of the TV. Alternatively, you could

get really creative and 3D-print your own case, as you can see on

page 58. Check out the boxout just to the left.

11 Find the right power supply
Getting power to the Raspberry Pi 2 so that it runs

properly can be tricky if you’re using a USB port or a mobile phone

charger – the former will be underpowered and the latter is not

always powerful enough. Make sure you get a 2A supply, like the

offi cial Raspberry Pi one.

12 Go wireless
We understand that not everyone has an ethernet cable

near their TV, so it may be a good idea to invest in a Wi-Fi adapter

instead. There is a great list of compatible Wi-Fi adapters on the

eLinux wiki: elinux.org/RPi_Verifi edPeripherals.

13 Mouse and keyboard
Now that we have the Raspberry Pi ready to be hooked

up, you should look at your controller situation – do you want

to be limited by the wires or should you get a wireless solution

instead? We will cover controller solutions over the page, but it’s

worth considering now.

14 Get ready for SSH
It will be easier to create and apply scripts to Minecraft

by uploading them via the network rather than doing it straight

on the Pi. In the terminal, find out what the IP address is by using

ifconfig, and then you can access the Pi in the terminal of another

networked computer using the following:

 ssh pi@[IP address]

15 Have a play
At this stage, what we have built is a fully-functional

Minecraft console. Now, at this point you could start playing if

you so wish and you don’t need to add a controller. You can fl ip

over to page 62 now if you want to begin learning how to mod your

Minecraft and do a bit more with it to suit your needs. However,

if you do want to add controller support then carry on and take a

look at Step 16.

Getting power to the Raspberry Pi 2
so that it runs properly can be tricky if
you’re using a USB port

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 79

Tips | Tricks | Hacks Tips | Tricks | Hacks

16 Add controller support
Make sure the controller input functions are installed

on the Raspberry Pi. To do this, ssh into the Raspberry Pi like

we did in Step 14 (where ‘raspberry’ is the password) and install

the following package:

 $ sudo apt-get install xserver-xorg-input-joystick

17 Controller mapping
We have a controller map for the PS3 controller that

you can download straight to your Pi, and with a bit of tweaking

can fi t most USB controllers as well. Go to the controller

confi guration folder with:

 $ cd /usr/share/X11/xorg.conf.d/

18 Replace the controller mapping
We’ll remove the current joystick controls by using

sudo rm 50-joystick.conf and then replace by downloading a

custom confi guration using:

 $ sudo wget http://www.linuxuser.co.uk/wp-content/
 uploads/2015/04/50-joystick.conf

19 Reboot to use
After a reboot to make sure everything’s working, you

should be able to control the mouse input on the console. R2 and

L2 are the normal mouse clicks and can be used to navigate the

Minecraft menu to access the game.

20 Go full-screen
So far you may have noticed that Minecraft is running

in a window – you can click the full-screen button to make it fi ll

the screen, however you then heavily limit your mouse control.

Thanks to the controller, you can get around that. As soon as you

load the game, make sure you use the sticks for movement and

the d-pad for selecting items in the inventory.

R2 Right click (hit)L2 Right click (hit)

R1 Cycle held item

Right stick
Camera

Start
Escape

Select
Escape

PS Button
Connect

controller

L3 / R3
Descend

while fl ying
Left stick

Movement

L1 Cycle held item

Directional
buttons

Movement

 Inventory

 Inventory

 Escape

X Jump

Unfortunately, Xbox

360 controllers work

slightly differently

with Linux. As they

use their own drivers

that are separate

to the normal

joystick drivers we

used for the PS3

pad and other USB

controllers, a 360

controller doesn’t

work as a mouse and

is harder to assign

specifi c functions to.

This makes it tricky

to use in a situation

such as this.

Xbox
controllers

Here’s the full

layout of the

buttons used

by the PS3

controller by

default – you can

change them in

the script that you

download in Step 18

Controls

80 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks Tips | Tricks | Hacks

We program Minecraft to react in
Python using the API that comes with
Minecraft Pi – it’s what we moved to
the home folder earlier

Here is some example code, and explanations for it, so that you
can learn how to program in Python and mod Minecraft Pi

Mod your Minecraft

We program Minecraft to react in python using the API that

comes with Minecraft: Pi Edition – it’s what we moved to the

home folder earlier on. Now’s a good time to test it – we can do

this remotely via SSH. Just cd into the Minecraft folder in the

home directory we made, and use nano test.py to create our

test file. Add the following:

from mcpi.minecraft import Minecraft
from mcpi import block
from mcpi.vec3 import Vec3
mc = Minecraft.create()
mc.postToChat(“Hello, Minecraft!”)

Save it, and then run it with:

 $ python test.py

“Hello, Minecraft!” should pop up on-screen. The code imports

the Minecraft function from the files we moved earlier, which

allows us to actually use Python to interact with Minecraft,

along with the various other functions and modules

imported. We then create the mc instance that will allow us

to actually post to Minecraft using the postToChat function.

There are many ways you can interact with Minecraft in this

way – placing blocks that follow the player, creating entire

structures and giving them random properties as they’re

spawned as well. There are very few limits to what you can do

with the Python code, and you can check out more projects

here: https://mcpipy.wordpress.com.

Over the page, we have a full listing for a hide and seek

game that expands on the kind of code we’re using here,

where the player must find a diamond hidden in the level, with

the game telling you whether you’re hotter or colder. You can

write it out from scratch or download it to your Pi using the

following commands:

 $ wget http://www.linuxuser.co.uk/tutorialfiles/
 Issue134/ProgramMinecraftPi.zip
 $ unzip ProgramMinecraftPi.zip
 $ cp Program\ MinecraftPi/hide_and_Seek.py ~/minecraft

Check out the annotations to the right to see how it works.

Below You can see the hidden diamond just
to the left of the crosshair at the centre of
this screenshot

Raspberry Pi Tips, Tricks & Hacks 81

Tips | Tricks | Hacks Tips | Tricks | Hacks

Full code
FileSilo.co.uk/bks-967

from mcpi.minecraft import Minecraft
from mcpi import block
from mcpi.vec3 import Vec3
from time import sleep, time
import random, math

mc = Minecraft.create()
playerPos = mc.player.getPos()

def roundVec3(vec3):
 return Vec3(int(vec3.x), int(vec3.y), int(vec3.z))

def distanceBetweenPoints(point1, point2):
 xd = point2.x - point1.x
 yd = point2.y - point1.y
 zd = point2.z - point1.z
 return math.sqrt((xd*xd) + (yd*yd) + (zd*zd))

def random_block():
 randomBlockPos = roundVec3(playerPos)
 randomBlockPos.x = random.randrange(randomBlockPos.x - 50, randomBlockPos.x + 50)
 randomBlockPos.y = random.randrange(randomBlockPos.y - 5, randomBlockPos.y + 5)
 randomBlockPos.z = random.randrange(randomBlockPos.z - 50, randomBlockPos.z + 50)
 return randomBlockPos

def main():
 global lastPlayerPos, playerPos
 seeking = True
 lastPlayerPos = playerPos

 randomBlockPos = random_block()
 mc.setBlock(randomBlockPos, block.DIAMOND_BLOCK)
 mc.postToChat(“A diamond has been hidden - go find!”)

 lastDistanceFromBlock = distanceBetweenPoints(randomBlockPos, lastPlayerPos)
 timeStarted = time()
 while seeking:

 playerPos = mc.player.getPos()

 if lastPlayerPos != playerPos:
 distanceFromBlock = distanceBetweenPoints(randomBlockPos, playerPos)
 if distanceFromBlock < 2:
 seeking = False

 else:
 if distanceFromBlock < lastDistanceFromBlock:
 mc.postToChat(“Warmer ” + str(int(distanceFromBlock)) + “ blocks away”)
 if distanceFromBlock > lastDistanceFromBlock:
 mc.postToChat(“Colder ” + str(int(distanceFromBlock)) + “ blocks away”)

 lastDistanceFromBlock = distanceFromBlock

 sleep(2)

 timeTaken = time() - timeStarted
 mc.postToChat(“Well done - ” + str(int(timeTaken)) + “ seconds to find the diamond”)

if __name__ == “__main__”:
 main()

Full code listing
Import
Here we’re importing the necessary modules
and APIs to program Minecraft. Most
importantly are the fi les in the mcpi folder
that we copied earlier

Locate
We connect to Minecraft with the fi rst line,
and then we fi nd the player’s position and
round it up to an integer

Range finding
Calculate the distance between the player
and diamond. This is done in intervals later
on in the code, and just compares the co-
ordinates of the positions together

Creation
Create a random position for the diamond
within 50 blocks of the player position that
was found earlier

Start
This is the main loop that actually starts the
game. It asks to get the position of the player
to start each loop

Notification
This part sets the block in the environment
and pushes a message using postToChat to
the Minecraft instance to let the player know
that the mini-game has started

Checking
We start timing the player with timeStarted,
and set the last distance between the player
and the block. Now we begin the massive
while loop that checks the distance between
the changing player position and the fi xed
diamond. If the player is within two blocks of
the diamond, it means they have found the
block and it ends the loop

Message writing
If you’re two or more blocks away from the
diamond, it will tell you whether you’re nearer
or farther away than your last position check.
It does this by comparing the last and new
position distance – if it’s the same, a quirk in
Python means it says you’re colder. Once it’s
done this, it saves your current position as
the last position

Success
It takes a two-second break before updating
the next position using the sleep function. If
the loop has been broken, it tallies up your
time and lets you know how long it was before
you found the diamond. Finally, the last bit
then tells Python to start the script at
the main function

82 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Use your Raspberry Pi and Python knowledge to code a
simple mini-game in Minecraft

Create a Minecraft
Minesweeper game

You may remember or have even played the classic
Minesweeper PC game that originally dates back to the
60s. Over the years it has been bundled with most operating

systems, appeared on mobile phones, and even featured as a

mini-game variation on Super Mario Bros.

This project will walk you through how to create a simple

version in Minecraft: it’s Minecraft Minesweeper! You will code

a program that sets out an arena of blocks and turns one of

these blocks into a mine. To play the game, guide your player

around the board. Each time you stand on a block you turn it to

gold and collect points, but watch out for the mine as it will end

the game and cover you in lava!

01 Update and install
To update your Raspberry Pi, open the terminal and type:

 sudo apt-get upgrade
 sudo apt-get update

The new Raspberry Pi OS image already has Minecraft and

Python installed. The Minecraft API which enables you to

interact with Minecraft using Python is also pre-installed. If

you are using an old OS version, it will be worth downloading

and updating to either the new Jessie or Raspbian image

downloadable here: www.raspberrypi.org/downloads.

Raspberry Pi Tips, Tricks & Hacks 83

Tips | Tricks | Hacks

02 Importing the modules
Load up your preferred Python editor and start a new

window. You need to import the following modules: import

random to calculate and create the random location of the mine,

and import time to add pauses and delays to the program. Next,

add a further two lines of code: from mcpi import minecraft and

mc = minecraft.Minecraft.create(). These create the program

link between Minecraft and Python. The mc variable enables you

to write “mc” instead of “minecraft.Minecraft.create()”.

 import random
 import time
 from mcpi import minecraft
 mc = minecraft.Minecraft.create()

03 Grow some fl owers
Using Python to manipulate Minecraft is easy; create

the program below to test it is working. Each block has its own ID

number, and fl owers are 38. The x, y, z = mc.player.getPos() line

gets the player’s current position in the world and returns it as a

set of coordinates: x, y, z. Now you know where you are standing

in the world, blocks can be placed using mc.setBlock(x, y, z,

fl ower). Save your program, open MC and create a new world.

 flower = 38
 while True:
 x, y, z = mc.player.getPos()
 mc.setBlock(x, y, z, flower)
 time.sleep(0.1)

04 Running the code
Reducing the size of the MC window will make it easier

for you to see both the code and the program running; switching

between both can be frustrating. The Tab key will release the

keyboard and mouse from the MC window. Run the Python

program and wait for it to load – as you walk around, you’ll drop

fl owers! Change the ID number in line 1 to change the block type,

so instead of fl owers, try planting gold, water or even melons.

05 Posting a message to the Minecraft world
It is also possible to post messages to the Minecraft

world. This is used later in the game to keep the player informed

that the game has started and also of their current score. In

your previous program add the following line of code under the

fl ower = 38 line, making this line 2: mc.postToChat(“I grew some

fl owers with code”). Now save and run the program by pressing

F5 – you will see the message pop up. You can try changing your

message, or move to the next step to start the game.

06 Create the board
The game takes place on a board created where the

player is currently standing, so it is advisable to fl y into the air or

fi nd a space with fl at terrain before running your fi nal program.

To create the board you need to fi nd the player’s current location

in the world using the code x, y, z = mc.player.getPos(). Then use

the mc.setBlocks code in order to place the blocks which make

up the board:

 mc.setBlocks(x, y-1, z, x+20, y-1, z+20, 58).

The number 58 is the ID of the block that is a crafting table. You

can increase or decrease the size of the board by changing the

+20. In the code example above, the board size is 20 x 20 blocks,

which gives you a 400-block arena to play within.

Switching between

the Python Shell and

Minecraft window

can be frustrating,

especially as MC

overlays the Python

window. The best

solution is to half the

windows across the

screen. (Don’t run

MC full-screen as the

mouse coordinates

are off). Use the Tab

key to release the

keyboard and mouse

from the MC window.

Switching to
the shell

Left The safe blocks
have been turned
into gold – the rest
are potential mines!

84 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

build the original board and place the mine, you have to find the

player’s position again and store it as a new variable – x1, y1 and

z1 – otherwise the board shifts around as the player moves.

 while True:
 x1, y1, z1 = mc.player.getTilePos()

10 One point, please
Now that the player has moved one square they are

awarded a point. This is a simple action of adding the value one

to the existing score value. This is achieved using score = score

+ 1. Since it sits inside a loop, it will add one point each time the

player moves.

 time.sleep(0.1)
 score = score + 1

11 The tension increases…
Once you have been awarded the point, the next stage of

the game is to check whether the block you are standing on is a

safe block or if it is the mine. This uses a conditional to compare

the coordinates of the block beneath you – x1, y1-1, z1 – with the

mine_x, mine_y, mine_z position of the mine. If they are equal

then you are standing on the mine. In the next step you will code

the explosion:

 if (x1, y1-1, z1) == (mine_x, mine_y, mine_z):

12 Setting the mine off
In the previous step a conditional checks whether you

are standing on the mine or a safe block. If it is the mine then it

will explode. To create this, use lava blocks, which will flow and

engulf the player. You can use the mc.setBlocks code to set

blocks between two points. Lava blocks are affected by gravity,

so setting them higher than the player means that the lava flows

down over the player.

 mc.setBlocks(x-5, y+1, z-5, x+5, y+2, z+5, 10)

07 Creating the mine
In the previous step you found the player’s location on

the board. This x, y, z data can be reused to place the mine on the

board. The code mine = random.randrange(0, 11, 1) generates

a random number between 1 and 10. Combine this with the

player’s current x axis position and add the random number to

the position – this creates a random mine block on the board.

 mine_x = int(x+mine)
 mine_y = int(y-1)
 mine_z = int(z+mine)

Use setBlock to place the mine: mc.setBlock(mine_x, mine_y,

mine_z,58). Using y-1 ensures that the block is placed on the

same level as the board and is therefore hidden. The number 58

is the block ID, which you can change if you wish to see where

the mine is; this is useful for testing that the rest of the code is

working correctly. Remember to change it back before you play!

08 Create a score variable
Each second that you remain alive within the game, a

point is added to your score. Create a variable to store the current

score, setting it to a value of zero at the beginning of the game.

Use the postToChat code to announce the score at the beginning

of the game. Note that MC cannot print a value to chat, so the

score is first converted into a string before it is displayed.

 score = 0
 mc.postToChat(“Score is ”+str(score))
 time.sleep(10)

09 Check the player’s position on the board
So far you have created a board that includes a

randomly-placed mine the same colour as the board so you can’t

see it! Next, you need to check the player’s position on the board

and see if they are standing on the mine. This uses a while loop

to continually check that your player’s position is safe, no mine,

else game over. Since the player’s coordinate position is used to

Right Nothing
says “game over”

quite like a huge
eruption of lava

Raspberry Pi Tips, Tricks & Hacks 85

Tips | Tricks | Hacks

If you enjoy
programming
and manipulating
Minecraft then
there are more great
Raspberry Pi -based
projects for you
to check out. Our
expert has a bunch
of them at tecoed.
co.uk/minecraft.
html. The folks
behind Adventures
In Minecraft
have some great
guides over at
stuffaboutcode.
com/p/minecraft.
html, as well.

Other
Minecraft
hacks

13 Game over
If you do stand on the mine, the game is over. Use the

post to chat code to display a “Game Over” message in the

Minecraft World.

 mc.postToChat(“G A M E O V E R”)

14 Final score
The last part of the game is to give a score. This uses

the score variable that you created in Step 8 and then uses the

mc.postToChat code. Convert the score to a string fi rst so that

it can be printed on the screen. Since your turn has ended, add a

break statement to end the loop and stop the code from running.

15 Safe block
But what if you missed the mine? The game continues

and you’ll need to know where you have previously been on the

board. Use the code mc.setBlock(x1, y1-1, z1, 41) to change the

block you are standing on into gold or another material of your

choice. In the code, the Y positon is Y – 1, which selects the block

beneath the player’s feet.

16 Increment the score
As well as living to play another turn, you also gain a

point. This is achieved by incrementing the score variable by one

each time you turn the block gold and return to the beginning of

the loop to check the status of the next block you step on. The

postToChat is to tell you that you have survived another move!

 score = score + 1
 mc.postToChat(“You are safe”)

17 Run the game
That completes the code for the program. Save it and

then start a Minecraft game. Once the world has been created,

run the Python program. Move back to the Minecraft window

and you will see the board created in front of you. Watch out for

that mine!

import random
import time
from mcpi import minecraft
mc = minecraft.Minecraft.create()

###Creates the board###
mc.postToChat(“Welcome to Minecraft MineSweeper”)
x, y, z = mc.player.getPos()
mc.setBlocks(x, y-1, z, x+20, y-1, z+20, 58)

global mine
mine = random.randrange(0, 11, 1)

###Places the mine###
mine_x = int(x+mine)
mine_y = int(y-1)
mine_z = int(z+mine)
mc.setBlock(mine_x, mine_y, mine_z,58)

score = 0
mc.postToChat(“Score is “+str(score))

time.sleep(5)
while True: ###Test if you are standing on the mine

 x1, y1, z1 = mc.player.getTilePos()
 #print x1, y1, z1 ###test
 time.sleep(0.1)
 score = score + 1

 if (x1, y1-1, z1) == (mine_x, mine_y, mine_z):
 mc.setBlocks(x-5, y+1, z-5, x+5, y+2, z+5, 10)
 mc.postToChat(“G A M E O V E R”)
 mc.postToChat(“Score is ”+str(score))
 break
 else:
 mc.setBlock(x1, y1-1, z1, 41)

mc.postToChat(“GAME OVER”)

Full code listing

Left Once finished,
our mini-game uses
the chat console to
report your score

Tips | Tricks | Hacks

The winter nights are getting longer; use Raspberry Pi and a
mobile device to remotely control your lights

Control lights with your Pi

The folks at Energenie have created some genius plug sockets
that can be turned on and off via your Raspberry Pi. You can

buy a starter kit which includes the RF transmitter add-on board

and two sockets to get you started. The add-on board connects

directly to the GPIO pins and is controlled with a Python library.

Once everything is installed and set up, your Raspberry Pi can

be used with the Pi-mote to control up to four Energenie sockets

using a simple program. This tutorial covers how to set up the

software, the sockets and how to adapt the program to run on

your mobile device.

 sudo apt-get update
 sudo apt-get upgrade

Depending on which version of the OS you’re using, you may need

to install the Python GPIO libraries. (Raspbian Jessie comes with

this library pre-installed, so you can skip this step.) Type:

 sudo apt-get install python-rpi.gpio

On completion, reboot your Pi. This will install the Python GPIO

libraries, meaning you can access and control the pins with

Python code.

Above Take control
of your home

environment using
your smartphone

01 Set up
To get started, boot up your Raspberry Pi and load the LX

Terminal, then update your software by typing:

What you’ll need
 Pi-Mote IR control board

with RC sockets
bit.ly/1MdpFOU

 Desk lamp

 Accessories

Full code

FileSilo.co.uk

/bks-B38

86 Raspberry Pi Tips, Tricks & Hacks

Raspberry Pi Tips, Tricks & Hacks 87

Tips | Tricks | Hacks

Left The Pi-mote
transmitter is so
easy to use; it is
powered by the Pi
and uses a transmit-
only open loop
system

02 Install the Energenie library
Next, install the Energenie libraries. These enable the

Pi-mote board and Raspberry Pi to interact with Python. In the

LX Terminal, depending on which version of Python you are

using, type either:

 sudo apt-get install python3-pip
 sudo pip-3.2 install energenie

…for Python 3, or:

 sudo apt-get install python-pip
 sudo pip install energenie

...for an older version. In the future, Energenie will update its

software and you may need to run a check for updates to

ensure that you have the most recent version. To update the

software, type the code:

 sudo pip install energenie -update

03 Fitting the Pi-mote
Before fi tting the Pi-mote transmitter, shut down your

Raspberry Pi with sudo poweroff. Unplug the power supply

and fi t the module onto your Raspberry Pi. The ‘L’ part of the

board fi ts opposite the HDMI port. Power up the Pi and plug in

one of your Energenie sockets in the same room or area that

your Pi is in. The range is fairly good, but furniture and walls

may sometimes block the transmission signal. You can test

that the socket is working by plugging in something like a desk

lamp and then pressing the green button that is located on

the socket. This will trigger the socket on and off, turning the

lamp on and off.

05 Set up your socket
Once you have downloaded the set-up program, run

it. This should place the socket into ‘learning mode’, and will be

indicated by the LED on the front of the socket housing slowly

fl ashing. If it is not doing this, press and hold the green button

for at least fi ve seconds and release it when the LED starts to

fl ash at one-second intervals. Run the program and it will send

a signal out. Follow the on-screen prompts, pressing the return

key when required.

When the code is accepted, success will be indicated with a

brief fl ashing of the LED on the housing. If you have more than

one socket to set up, simply use the same program and method

to do so for as many times as required.

04 Download the set-up code
Before the Raspberry Pi can interact with the socket

and switch it on/off, it requires programming to learn a control

code that is sent from the transmitter. Each socket has its

own unique code so that you can control up to four individually.

Energenie provides the set-up program which can be found

inside your tutorial resources (available through FileSilo).

06 A quick test
Before you get to the task of creating your Python code

to control your socket, it is always advisable to test that the

socket is working correctly. Ensuring that the power is turned

on at the wall plug and that the lamp is switched on, you can

turn the lamp off by pressing the green button on the front of the

Energenie socket. The lamp should turn back on again when the

button is next pressed.

Every device on the

Internet is assigned

an Internet Protocol

address (IP address).

This is a numerical

label which is

used to locate and

identify each device

within a network

which may contain

many thousands

of devices. Most

home network IP

addresses start with

the numbers 192.168,

with your router

being on 192.168.1.1.

IP address

07 Code to turn the socket on
The Python Energenie library makes it incredibly easy

to create a code to turn the socket on, which will then turn your

lamp on. Before you know it, you will be using your Raspberry Pi

to turn the kettle or the TV on or off!

Open your Python editor and start a new program. Next,

import the Raspberry Pi GPIO library (line 1, below), then import

the Energenie library (lines 2 and 3). Finally, add in the code to

switch the socket on (line 4). Save and then run your program.

The socket will turn on, you may hear a click, and then your lamp

will come on.

 import RPi.GPIO as GPIO
 import energenie
 from energenie import switch_on
 energenie.switch_on(1)

08 Switching the socket on and off
Since you have not told the socket to turn off, it will

stay on, which means the lamp will stay on forever (or until the

bulb blows)! To turn the socket off after fi ve seconds, import the

time function at the start of your program (line 2, below), add the

command to turn off the socket (line 5). Then add a pause with

the sleep command (line 7) and fi nally turn off the lamp (line 8).

Now save and run the program.

 import RPi.GPIO as GPIO
 import time
 import energenie
 from energenie import switch_on
 from energenie import switch_off

energenie.switch_on(1)
time.sleep(5)
energenie.switch_off(1)

09 Creating a web-based application
It is possible to augment this hack so that you can turn

the lamp on and off from a mobile device such as your phone,

laptop or tablet. This makes the whole project more impressive,

slick and fun. The fi rst step is to set up your Raspberry Pi as a

web server which will host and display a web page with the ON /

OFF option. These buttons are interactive and control the socket.

Open the LX Terminal and install pip and Flask:

 sudo apt-get install pip
 sudo pip install flask

Tips | Tricks | Hacks

88 Raspberry Pi Tips, Tricks & Hacks

10 CSS and HTML
To make the web page look presentable, you need to set

up an HTML and a CSS file. HTML stands for HyperText Markup

Language and is the markup language used to create web

pages. Your browser reads HTML files and converts them into

web pages, enabling images and objects to be embedded into

the pages. Cascading Style Sheets, or CSS, is the code which

describes how the web page will look; the presentation of the

HTML content. It contains the instructions on how the elements

will be rendered on your device. In this tutorial, it controls how the

on and off options will be presented and look on the screen.

11 Create a new folder
With Flask installed, reboot your Raspberry Pi; type sudo

reboot. Create a new folder called Mobile_Lights in the /home

/pi folder. This is where you will save the Python program which

controls the socket and lamp, the CSS and the HTML file. You

can create the folder in the LX Terminal by typing mkdir Mobile_

Lights or right-clicking in the window and selecting New Folder.

 <link rel=“stylesheet” href=“/static/style.css” />
 <meta name=“viewport” content=“width=device-
width, user-scalable=no” />
 </head>
 <body>
 <div class=“on”>ON</div>
 <div class=“off”>OFF</div>

 </body>
 </HTML>

Above You’ll need to
get the folder names

correct so that files
are saved properly

12 The HTML files
Open the Mobile_Lights folder and create a new folder

called ‘templates’. This folder is where the HTML file is saved that

contains the structure for the website layout. The code names

the web page tab and, most importantly, adds the links for the on

and off option.

Open a text editor from your Start menu, or use nano and

create a new file. Add the HTML below to the file and then

save the file into the template folder, naming it ‘index.HTML’.

Remember, this is an HTML file and must end with the file

extension .html:

 <!doctype HTML>
 <HTML>
 <head>
 <title>Light Controller</title>

13 Add some style
The Cascading Style Sheet, CSS, is used to create and

apply a ‘button’ style effect to the web page. Move back to the

Mobile_Lights folder and create a new folder named ‘static’.

This is where the CSS file is saved. Create another new text file

and add the code below, which sets out the ‘style’ for the web

page. You can customise the colours of the buttons from line

20 onwards. Save the file as ‘style.css’ in the static folder. Keep

in mind that this is a CSS file and needs to be saved with the file

extension .css:

 body {
 position: absolute;
 margin: 0;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 font-family: Arial, sans-serif;
 font-size: 150px;
 text-align: center;
 }

 div {
 display: block;

Raspberry Pi Tips, Tricks & Hacks 89

Tips | Tricks | Hacks

 width: 100%;
 height: 50%;
 }

 div a {
 width: 100%;
 height: 100%;
 display: block;
 }

 div.on {
 background: black;
 }

 div.on a {
 color: white;
 }

 div.off a {
 color: black;
 }

 a:link, a:visited {
 text-decoration: none;
 }

 def index():
 return render_template(‘index.HTML’)

 @app.route(‘/on/’)
 def on():
 switch_on()
 return render_template(‘index.HTML’)

 @app.route(‘/off/’)
 def off():
 switch_off()
 return render_template(‘index.HTML’)

 if __name__ == ‘__main__’:
 app.run(debug=True, host=’0.0.0.0’)

15 Find your IP address
Before you start the web server running, you need to

check the following:

• You have a folder called Mobile_Lights

• In the Mobile_Lights folder is a Python fi le named mobile_

lights.py

• Also within the Mobile_Lights folder are two folders, one

named templates which stores the index.HTML fi le and

another folder named static which contains the fi le style.css

If all checks out, in the LX Terminal type sudo hostname –I. This

will display the IP address of your Raspbery Pi – for example,

192.158.X.X. Make a note of it because this is the address you will

enter into the web browser on your mobile device.

17 Turn your lights on and off
Grab your mobile device, smartphone or tablet and load

the web browser. In the address bar enter the IP address that you

noted down in Step 15. At the end of the address, add ‘:5000’ – for

example, 192.168.1.122:5000. The 5000 is the port number that

is opened to enable the communication between your device

and the Raspberry Pi. You will be presented with ON and OFF

options, and you can now control the socket and whatever you

have plugged in – kettle, radio, TV – all from your mobile device by

simply pressing ON or OFF. Have fun!

16 Start the web server
You have arrived at the point where you are ready to start

the web server. Move to the Mobile_Lights folder by typing cd

Mobile_Lights. Now run the Python mobile_lights.py program

by typing sudo python mobile_lights.py. This starts up the web

server, which is then ready to respond to the buttons that are

pressed on the web page.

Flask is a powerful

tool for creating

interactive web

pages and apps. If

you are interested

in learning more

and trying out some

other projects, this

resource is a great

place to start: http://

fl ask.pocoo.org.

Check out the site for

examples of where

Flask and Python are

used for real-world

applications and

solutions: http://

fl ask.pocoo.

org/community/

poweredby.

Flask

Above We recommend using the -I operator over -i with the hostname
command, as the latter only works if the host name can be resolved

14 Putting it all together
The fi nal part of the setup is to write the Python script

that combines the index.html and style.css fi les with the

Energenie socket control code similar to the one used in Step 7.

Open IDLE and start a new window, add the following code and

save into your Mobile_Lights folder, naming it ‘mobile_lights.py’.

Line 4 uses the route() decorator to tell Flask the HTML template

to use to create the web page. Lines 7 and 11 uses app.route(‘/

on/’) and app.route(‘/off/’) to tell Flask the function to trigger

when the URL is clicked. In line 15 the run() function is used to

run the local server with our application. The if__name__ ==

‘__main__’: makes sure the web server only runs if the script is

executed directly from the Python interpreter and not used as an

imported module.

 from flask import Flask, render_template
 from energenie import switch_on, switch_off

 app = Flask(__name__)

 @app.route(‘/’)

90 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Get your favourite shows and video podcasts
streamed automatically to your TV with Miro

Stream internet TV to
your Raspberry Pi

Finding the content you’re interested in viewing can take
a while. Whether you’re looking for internet TV stations,

video podcasts, audio podcasts or shows syndicated online,

taking the time to fi nd and download them can be slow going,

particularly if you have a busy lifestyle. You might even have no

time to watch after you’ve waited for the download.

Thanks to the Miro media management software, we

can automate all of this, and with the software running on

a Raspberry Pi, you can easily build a compact system for

downloading and playing back shows that you have an interest

in. We’re talking targeted TV on demand, which makes this

project ideal for staying up to date with particular news and

trends on a certain topic.

01 Set up your Pi with Raspbian
Sadly, Miro cannot run on Raspbian Jessie, so make sure

you’re using Wheezy, available via raspberrypi.org/downloads

/raspbian. Ensure your Pi is connected to a TV or display via HDMI.

03 Set Miro to launch at startup
Make sure Miro app is confi gured to launch at startup.

Open File>Preferences>General and check ‘Automatically run

Miro when I log in’ and ‘When starting up Miro remember what

screen I was on when I last quit’. Also set your Pi to boot into X

using the raspi-confi g utility.

What you’ll need
 Raspbian Wheezy

 HDMI cable

 Monitor/TV display

02 Install Miro
With Wheezy fl ashed to your SD card and your Pi

booted up, open Terminal and enter:

 sudo apt-get install miro

Installation will take a few moments. Once complete, you’ll

fi nd Miro in Menu>Sound and Video. Click it to get started.

As Miro is a desktop application, you’ll need your mouse and

keyboard connected to confi gure it.

Raspberry Pi Tips, Tricks & Hacks 91

Tips | Tricks | Hacks

05 Confi gure playback settings
Move now to the Playback tab, and check Play media

in Miro. This limits reliance on other apps, which may drain

resources. You should also click the Play video and audio

items one after another radio button, and under Resume

Playback, check the fi rst and third items.

04 Check for content
Switch to the Podcasts tab and place a check in

the box labelled ‘Show videos from podcasts in the Videos

section’. On the right-hand side of the window, set your

preferred frequency for checking for new content. Miro will

poll your favourite websites and feeds based on this setting.

Left You can
subscribe to all sorts
of content, from
internet TV channels
to news podcasts

The more links you add, the more
regularly updated content will be
downloaded to your media manager

06 Source videos and podcasts
With Miro set up to play back the video and audio

content you want to enjoy, it’s time to fi nd some! The best way

to do this is to just check the websites that you regularly use

for video and audio podcasts (preferably the former) and then

copy the XML link.

It is tempting to set

a regular frequency

for your content

checking in File>

Preferences>

Podcasts, but note

that checking too

regularly is going to

result in resources

being hogged

temporarily, which

may result in an

interruption if you

happen to be actually

watching something

when Miro checks for

new content. Limit

polling to hourly or

daily checks.

Checking for
new content

09 Avoid YouTube
As good a solution as Miro is to building a video

podcast streaming center, displaying material that you’re

interested in on demand, it’s sadly just no good for videos

on YouTube. This doesn’t really restrict you too much as

there are plenty of other media outlets to cover, but it’s

worth mentioning if you’re a frequent YouTube watcher. This

is a shame, but shouldn’t impact the way you use it – your

Raspberry Pi now downloads focused content on demand!

08 First time use
Remember earlier when we instructed Miro to behave

a particular way upon launch? It’s time to set that behaviour

now, by opening the Videos view in the left-hand pane and

playing the fi rst video. Each time you boot your system, Miro

will jump to this view and begin playing.

07 Add podcast feeds
In Miro, open up File>Add Podcast and then paste the

podcast feed URL into the dialog that appears, clicking Create

Podcast when you’re done.

The more links you add, the more regularly updated content

will be downloaded to your Pi-powered Miro media manager,

ready to watch on demand.

92 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

What you’ll need
 Raspberry Pi B+

 Tilt, roll, pressure and
temperature sensors

 3D-printed camera tilt and
propellers

 Camera module

 USB joystick control

 Ethernet cable

Left Pressure sensor data is relayed from the
ROV to the laptop as the vehicle dives deeper

Below The camera module is sealed behind a
waterproof lens on the front of the ROV

Tips | Tricks | Hacks Video For the time being, Niels has fi tted
a GoPro Hero to the front of the ROV for
recording purposes. A live video stream is
fed to the laptop

Joystick The ROV is controlled via a
joystick connected to a laptop. The laptop
runs a series of Python scripts, using
PyGame to read the signals

3D-printed A few parts have been
3D-printed, as it proved to be the easiest
way to tailor the propellers to the exact size
and shape needed

Pi The GPIOs are used to help control the
four main motors that power the ROV. The
Raspberry Pi also relays information back
to the server

Raspberry Pi Tips, Tricks & Hacks 93

Tips | Tricks | Hacks

Underwater
Pi drone

Niels Affourtit has turned his passion for RC vehicles
into a fully functioning, submersible Ras Pi vehicle

Why did you decide to build an ROV
(remotely operated vehicle)?
When I was a kid I frequently built RC

models; sailing boats and speedboats.

While I owned a fantastic RC glider and

dreamed of having my own RC submarine

someday, my neighbour at the time had

an RC submarine and discouraged me

from building one by saying this thing

always had trouble with its electronics and

leakage. Besides, almost all waters are

murky in our area!

Around the end of 2014, I saw a National

Geographic episode about the salvage

of the Costa Concordia and was very

impressed with how they used a VideoRay

to monitor the work done by their divers,

and it helped revive my dream of having

my own model submarine. That’s when I

stumbled across the people who have built

their own ROV.

How are the inner components of the
ROV kept safe from water damage?
Since the Nineties, a lot has changed in

the world of RC models. There are now

LiPo batteries that give much more energy

and power, and brushless outrunner

motors that can run submerged in water,

making moving parts through the hull

unnecessary – this is the key development

that makes the chance on leakage very

small. The end closure is tightened by

external water pressure and happens to be

extremely reliable. A lot of the information

and lessons I had learned are found on

openrov.com, svseeker.com, raspberrypi.

org and many other sites with forums

about Linux and Raspberry Pi.

How long has the development of the
ROV taken? Were there any problems?
When I started in December, I had a lot of

stuff to learn and decided that purchasing

a low-cost driver was where I should start.

I opted for a Raspberry Pi instead of the

BeagleBoard used by OpenRov, or an

Arduino board. I had previously learned

a little Linux from the workstation my

company bought to do stress calculations

(using our finite element program ANSYS).

We also use Linux to improve daily

interaction with third-party software,

doing batch runs and fatigue calculations

on steel pipelines. For all the functions on

this ROV, there are so many options that I

always face new challenges; this is what

makes this project so interesting.

What role does the Raspberry Pi take in
this project?
The ROV is controlled with a joystick

connected to a laptop. The laptop runs

Python scripts, and with PyGame I can

read the signals from the joystick. The

signals are then translated into servo

commands and sent to the Raspberry

Pi via a simple socket connection. The

Raspberry Pi is the brain of the ROV; it

communicates with the surface laptop via

Ethernet. Thanks to the OpenROV project,

I learnt to implement a Tenda home plug,

which reduces the communication lines

from four to two wires, increases the reach

from about 50 metres with a submerged

CAT5 to 300 metres, and makes the signal

much less susceptible to noise.

A battery-powered Wi-Fi router

(bought for €1 at the local recycling store)

then sends the signal to my laptop. The

advantage of the Wi-Fi router is that I can

attach it to a reel, avoiding the use of sliding

contacts. It also reduces tripping risks on

shore. The Wi-Fi router can be mounted

on a buoy so that the ROV can be launched

from a boat. Signals from the ROV are

communicated via a web interface, the

same way as OpenROV. All sensor data is

written to a MySQL database and an Ajax

script reads the data out and presents it on

a web page. This web page also presents

the live video feed from the camera of the

ROV. Currently I’m using a Ras Pi cam, but

I have ordered the USB camera used by

OpenROV to improve the images.

The GPIO (General Purpose Input

and Output) of the Pi is used to control

the standard ESC (Electronic Speed

Controller) of the four motors by PWM

(Pulse Width Modulation), the tilt servo of

the camera, relays for the lights, and server

communication. Although the Pi now has

many libraries for popular sensors, I still

need an Arduino to communicate with the

depth sensor (MS5803-5). This Arduino

is connected via the USB of the Pi and

its analogue port is used to measure the

voltage of the battery (using two resistors

in series to drop the voltage to a safe 2-3V).

Since there is little space inside the ROV,

the standard (USB) power connection on

the side cannot be used. Therefore I inject

power via the GPIO board at the 5V pin. This

isn’t a fused connection, imposing some

risk, but it has worked perfectly for me.

Why did you decide to use 3D-printed
parts in your ROV?
The propellers, tilt mechanism of the

camera, and the Raspberry Pi housing are

3D printed. My neighbour imports Inno3D

printers and I borrowed one to use for my

project. This way I could vary the size, pitch

and direction of the propellers. The parts

take half an hour to print but cost only a

few cents. Later on I will use the printer to

make hydrodynamic motor mounts.

How deep can the ROV currently travel?
The tested depth is 13 metres. I took it

down to a lake without the electronics and

lowered it packed with lead. The collapse

pressure determines the maximum depth

of the ROV. I design offshore pipelines

at INTECSEA and collapse pressure

calculations are my everyday work. I

made a simple finite element model of

the ROV and applied external pressure

to see how it would behave. Currently the

6mm-thick end caps are the bottleneck. At

30-40 metres they deflect so much that I

anticipate they can start tearing. The lakes

in the Netherlands are normally a few

metres deep, at a few places 15-25 metres.

Even the North Sea here is only 20-30

metres deep, so extending the depth limit

has not been my priority.

94 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Use your Raspberry Pi as a wireless access point
and route traffi c anonymously

Anonymise your web
traffi c with a Pi Tor router

Are you concerned about your online privacy? Suspect that

the NSA or GCHQ are tracking you online? Or are you simply

anxious about advertising networks targeting their ads at you?

If this is the case, or you’re simply on the lookout for a new

project, then setting your Raspberry Pi up as an anonymising

Tor wireless access point is a good way to save time and effort

setting up Tor on all of your PCs and mobile devices.

If you’re unaware, Tor is free software that enables

anonymity online and routes internet traffi c through a

worldwide anonymising network of over 7000 relays. By doing

this, your location and website use can be concealed from

techniques such as traffi c analysis and network surveillance.

This is all about protecting your privacy by making your

visits to websites, instant messages, emails and more

diffi cult to trace, and can be set up on your Raspberry Pi with

a wireless dongle (or a Raspberry Pi 3), Ethernet cable, and a

bit of confi guration.

01 Connect everything
With everything connected and switched on, you can

begin confi guring the Pi router. So begin by plugging one end of

the Ethernet cable into your Raspberry Pi and the other into a

spare port in your router.

If you’re using a pre-2016 model of the Raspberry Pi, connect

a wireless dongle to the computer. Raspberry Pi 3 owners don’t

need to do this as the computer has built-in wireless networking.

02 Remotely confi gure with SSH
The next step is to connect to your Raspberry Pi via

your PC, and you can do this simply using SSH. (If this isn’t an

option, however, continue the rest of the tutorial with a monitor

connected to your Raspberry Pi, with a mouse and keyboard.) To

use SSH, open a terminal and enter:

 ssh pi@192.168.0.27

Left Once you’ve
set your Tor router

up, you can browse
anonymously from
your smartphone if
you connect to that

router’s Wi-Fi signal

What you’ll need
 Ethernet cable

 Wireless router

 USB WiFi adaptor or

Raspberry Pi 3

Raspberry Pi Tips, Tricks & Hacks 95

Tips | Tricks | Hacks

… where the Raspberry Pi has the default username of “pi” and

the IP address 192.168.0.27. If your distro doesn’t have SSH

installed, you can install openssh-client or putty. You can also

communicate via SSH in Windows using PuTTY.

You’ll fi nd the IP address of your Raspberry Pi by checking your

router’s admin page, or connecting a monitor and keyboard and

entering ifconfi g.

03 Install access point
Next, connect to the Raspberry Pi with SSH and enter

iwconfi g to ensure the wireless adaptor is recognised. Then,

refresh the package list with sudo apt-get update and install

the wireless access point software:

 sudo apt-get install hostapd isc-dhcp-server

04 Edit DHCP settings
Next, we need to edit the /etc/dhcp/dhcpd.conf fi le, to

avoid IP addresses being assigned randomly. Open in nano with:

 sudo nano /etc/dhcp/dhcpd.conf

Scroll through for the lines starting “option domain-name” and

comment them out with a # as follows:

 #option domain-name-servers ns1.example.org, ns2.
example.org;

 #option domain-name “internal.example.org”;

Following this, fi nd “authoritative” and uncomment the line by

removing the #.

05 Specify IP addresses
Head down to the end of the document and add the

following lines to defi ne the IP address for the access point,

the range of addresses and the domain name servers (also

known as DNS):

 subnet 192.168.12.0 netmask 255.255.255.0 {
 range 192.168.12.5 192.168.12.50;
 option broadcast-address 192.168.12.255;
 option routers 192.168.12.1;
 default-lease-time 600;
 max-lease-time 7200;
 option domain-name “local”;
 option domain-name-servers 8.8.8.8, 8.8.4.4;
 }

Note that the domain name servers specifi ed here are

provided by Google. Press Ctrl+X to save and exit, following

the prompts.

06 Assign a static IP
Because the Raspberry Pi’s wireless card receives

a dynamic IP address by default from your router, we need to

specify a static IP so that it can always be accessed in its role as

a Tor anonymiser.

With nano, open /etc/default/isc-dhcp-server, scroll down to

the line that currently reads INTERFACES=“”, and edit so it reads

INTERFACES=“wlan0”. Save and exit.

Various errors can

occur during the

setting up of this

project. Problems

with your Locale

settings are one

example, and this

can be dealt with

by editing the ssh_

confi g fi le. Enter:
sudo nano /etc/ssh/
ssh_config

Find the line that

reads “SendEnv

LANG LC_*”,

commenting it

out with a # at the

beginning. You may

need to reboot your

Raspberry Pi to fully

overcome the error.

Deal with
errors

Tor is free software that enables
anonymity online and routes
internet traffi c through a worldwide
anonymising network

96 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

96 Raspberry Pi Tips, Tricks & Hacks

07 Set up the wireless adaptor
With wireless adaptor wlan0 now specifi ed, we need to

disable it before confi guring, using the command sudo ifdown

wlan0. Using nano once again, open the /etc/network/interfaces

text fi le and comment out three lines with #, so they read:

 # iface wlan0 inet manual
 # wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
 # iface default inet dhcp

Find the line allow-hotplug wlan0 and add the following:

 iface wlan0 inet static
 address 192.168.12.1
 netmask 255.255.255.0

Use Ctrl+X to save, and activate:

 sudo ifconfig wlan0 192.168.12.1

08 Confi gure your new WAP
With the wireless access point physically built, the

software installed and then defi ned, it is time to confi gure it. In

nano, create a new fi le:

 sudo nano /etc/hostapd/hostapd.conf

To this, add the following:

 interface=wlan0
 ssid=TorHotSpot
 hw_mode=g
 channel=6
 macaddr_acl=0
 auth_algs=1
 ignore_broadcast_ssid=0
 wpa=2
 wpa_passphrase=$Your_Passphrase$
 wpa_key_mgmt=WPA-PSK
 wpa_pairwise=TKIP
 rsn_pairwise=CCMP

You can specify your own SSID; you’ll also need to specify your

own secure password.

09 Find the confi guration fi le
By default, your Raspberry Pi will not be able to see the

new confi guration fi le. In order for it to be detected when the

wireless access point boots, we need to point to it in the /etc/

default/hostapd fi le. To do this, open the fi le in nano and look for

the line that reads #DAEMON_CONF=“”. Uncomment this, and

add the fi le path to the fi le:

 DAEMON_CONF=“/etc/hostapd/hostapd.conf”

Press Ctrl+X to save and exit.

10 Confi gure network address translation
Network address translation, or NAT, needs to be

confi gured to allow multiple devices – laptops, smartphones,

tablets, media streamers, etc. – to connect to the Raspberry

Pi’s wireless access point and route traffi c through that single IP

address. Open /etc/sysctl.conf with nano and at the bottom of

the fi le add:

 net.ipv4.ip_forward=1

Again, press Ctrl+X to save and exit, and enter this command to

activate forwarding:

 sudo sh -c “echo 1 > /proc/sys/net/ipv4/ip_forward”

11 Specify routing rules
With this done, routing rules need to be added. These will

connect the Ethernet port eth0 and the Raspberry Pi wireless

port wlan0:

 sudo iptables -t nat -A POSTROUTING -o eth0 -j
MASQUERADE

 sudo iptables -A FORWARD -i eth0 -o wlan0 -m state
--state RELATED,ESTABLISHED -j ACCEPT

 sudo iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT

12 Use the rules upon boot
Routing rules will be deleted when you restart the Pi, so in

the terminal enter:

 sudo sh -c “iptables-save > /etc/iptables.ipv4.nat”

This ensures the rules will persist. Next, open /etc/network/

interfaces with nano and add this line to the end to load rules

when the device boots:

 up iptables-restore < /etc/iptables.ipv4.nat

Save and exit, then restart the DHCP server:

 sudo service isc-dhcp-server restart

Finally, enable the access point:

 sudo /usr/sbin/hostapd /etc/hostapd/hostapd.conf

13 Ready your access point
At this stage, it should be possible to connect to the

Raspberry Pi wireless access point. But you’ll need to guarantee

some settings, starting with the DHCP and hostapd services:

 sudo service hostapd start
 sudo service isc-dhcp-server start

Update the initialisation (init) scripts with:

 sudo update-rc.d hostapd enable
 sudo update-rc.d isc-dhcp-server enable

While the older, dual

USB port Raspberry

Pis can be used for

this project, the best

results are achieved

with the Raspberry

Pi 2 and 3 models.

The reasons are

simple: both have

four USB ports,

thereby enabling

the connection of

other devices such

as keyboard and

mouse if necessary,

and both are fast

enough to deal with

the volumes of data

routing required.

A Pi Zero probably

wouldn’t be

practical as a long-

term solution.

Which Pi
can you
use?

Raspberry Pi Tips, Tricks & Hacks 97

Tips | Tricks | Hacks

Above You could
even use the Pi 3’s
Bluetooth to control
your smart home
gadgets as well
as route your web
traffi c through Tor

Restart with sudo shutdown -r now, and retry the connection

from your mobile device.

14 Time to install Tor
As things stand, the Raspberry Pi is a wireless access

point. But it is not anonymised yet. Reconnect via SSH and then

run sudo apt-get install tor, then open /etc/tor/torrc in nano

and add the following to instruct Tor to anonymise the wireless

access point:

 Log notice file /var/log/tor/notices.log
 VirtualAddrNetwork 10.192.0.0/10
 AutomapHostsSuffixes .onion,.exit
 AutomapHostsOnResolve 1
 TransPort 9040
 TransListenAddress 192.168.12.1
 DNSPort 53
 DNSListenAddress 192.168.12.1

15 Add SSH exception
Next, fl ush the IP tables with:

 sudo iptables -F
 sudo iptables -t nat -F

And follow this by adding an exception for SSH connections on

port 22:

 sudo iptables -t nat -A PREROUTING -i wlan0 -p tcp
--dport 22 -j REDIRECT --to-ports 22

These two rules enable DNS lookups and direct TCP traffi c to

Tor’s port 9040, respectively.

 sudo iptables -t nat -A PREROUTING -i wlan0 -p udp
--dport 53 -j REDIRECT --to-ports 53

 sudo iptables -t nat -A PREROUTING -i wlan0 -p tcp
--syn -j REDIRECT --to-ports 9040

Save to the NAT fi le with:

 sudo sh -c “iptables-save > /etc/iptables.ipv4.nat”

16 Enable the Tor service
At this stage, you can enable the Tor service on your

wireless access point with:

 sudo service tor start

Boot scripts can be enabled with:

 sudo update-rc.d tor enable

Restart the Pi again with sudo shutdown -r now.

17 Verify Tor anonymity
With your Raspberry Pi wireless access point restarted,

it’s time to connect using a Wi-Fi enabled device, perhaps a

smartphone or laptop. As before, the connection should work

without any problems – but are you browsing anonymously?

You can fi nd out by heading to https://torproject.org from

two devices and comparing the IP addresses. If they’re different,

you’re anonymous!

NAT needs to be
confi gured to allow devices
to connect to the Raspberry
Pi’s wireless access point

Tips | Tricks | Hacks

98 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Wondering how we illustrate circuit diagrams? With
Fritzing – a donationware utility you can use too!

Create your own circuit
diagrams with Fritzing

Putting circuits together can be tricky, even for experts.
Fortunately, various notations exist that make it easier to work

out just where wires, components and power sources are

connected. But rather than jot these details down with a pencil

and paper, you might prefer to bring an element of realism to the

illustration. This is particularly useful for beginners, and if you’re

demonstrating a breadboard-mounted circuit with an Arduino,

for instance, you might wish to clearly and accurately illustrate

the precise positions of each component and wire. This is where

Fritzing comes in.

You’ve probably seen illustrations of circuits in the pages of

Linux User & Developer over the years, and with Fritzing you

too can put together circuit illustrations, simply by dragging and

dropping the categorised components into place, saving, and

exporting. In addition to breadboard illustrations, you can also

create traditional schematics and PCB diagrams.

With some of the same familiar shortcuts and tools that you

may have already used in an art package, Fritzing is remarkably

easy to use.

01 Install Fritzing
For the quickest installation option, use sudo apt-get

install fritzing on Ubuntu (or whichever Debian fork you’re using).

Alternatively, for Fedora use yum install fritzing. If you prefer,

you can also download from the website (ensuring you select the

32-bit or 64-bit as appropriate for your system) and extract the

contents. Once you’ve done this, navigate to the directory in the

Terminal and run ./Fritzing to launch.

02 Select your project type
With the app launched, you’ll need to select an

appropriate project type. Three are available in Fritzing:

Breadboard, Schematic and PCB. We’re starting with the

Breadboard project, so select this. Across the bottom of the

screen you’ll see controls to add notes and rotate the board; on

the right, various component illustrations are listed by category.

You’ll find the IP address of your Raspberry Pi by checking your

router’s admin page, or connecting a monitor and keyboard and

entering ifconfig.

Raspberry Pi Tips, Tricks & Hacks 99

Tips | Tricks | Hacks

03 Select your parts
The next stage is to identify the parts that you need

to add to the breadboard to complete your diagram. For a

fi nished diagram you’ll want to keep this as simple and clear

as possible, but for now you have the scope to have a play

around. In the Parts box in the top-right corner, choose the

appropriate tab and drag components and wires to your

breadboard project.

04 Manipulate your board
Before you begin to add components to the board,

spend a few moments with the mouse to get an idea of what you

can do. Left-clicking on the board allows you to move it about, for

instance, while right-clicking displays a menu with commands

to rotate, raise, lower and lock parts, and more. You can also use

your mouse roller and the Ctrl key to zoom in and out.

05 Add wires
Adding a wire by left-clicking the start point and

dragging to the end point. Breadboard pins have labels

assigned, and these can be displayed by hovering your mouse

pointer over the pins you wish to identify.

You can also add pivots to the wires, which can be useful if

you have a busy project. Simply left-click along the length of

the wire and pull it in the direction you want.

06 Add components
To build up your project, you’ll need to drag the

components you need into the main panel. Look carefully as

you do this; Fritzing highlights the areas on the breadboard that

enable connections to the component. This should aid you with

the correct connection of your wires, although it isn’t a perfect

guide for creating circuits. However, if you’re new to breadboards,

it can help you understand how they work.

07 Switch views
Breadboarding is an easy way of putting circuits

together. But the graphical representation isn’t to everyone’s

liking. Fortunately, Fritzing includes various views that provide

alternatives. Across the top of the screen you will notice the

Schematic and PCB buttons. Click these to switch views – the

project you’re currently working on will be displayed in a different

format! This can prove useful later on at the export stage.

Once you start using

Fritzing regularly, it’s

a good idea to grab all

of the components

that you intend to use

early in the project,

and just leave them

in the main panel,

ready to use. Then, if

you need to regularly

switch between

the different part

categories, you

can easily pull in

the components

without wasting time

switching between

categories – you’ve

already selected

them all!

Get
organised

Put together circuit
illustrations, simply by
dragging and dropping

Above Fritzing
covers a huge range
of components as
well as boards like
the Arduino

100 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

In the Parts panel the

second tab is empty

when you first run

Fritzing. Labelled

MINE, this is a place

where you can collect

the components

and boards you use

regularly. To add

preferred parts to

this list, ready for

instant access the

next time you create

a Fritzing diagram,

browse to the

relevant tab, find the

component you want,

and drag and drop it

onto the MINE tab.

Mine
your parts

Right You can
convert your

diagrams into proper
schematics, too

08 Incorporate other boards
So far we’ve been playing around with the breadboard

on its own. But what if you were developing a project with an

Arduino and a breadboard-based circuit?

The answer is in the Parts panel on the right. Select the

Arduino symbol (a ‘–’ and ‘+’ wrapped in a Möbius strip) and drag

the corresponding Arduino board into the main panel, alongside

your breadboard. A selection of Arduino shields is also included.

09 Familiarize yourself with Parts
In fact, there are so many parts that you can use in a

Fritzing diagram that it is quite easy to find yourself bewildered

by the choices available to you.

Use the tabs on the left column of the Parts panel to find the

items you’re looking for. You’ll find parts for Arduino, Intel Edison

and Galileo, SparkFun and many more.

As you mouseover or select each part, details are displayed in

the Inspector panel.

10 Manipulate other views
As you switch through to the alternative views

(Schematic and PCB) you’ll find that the options for moving

things around are limited, although still possible.

For instance, in the illustration above, while the rectangle

representing an Arduino can be moved around with a simple

left-click and drag, the circuit originally built on a breadboard

cannot. Instead, it is merely a collection of components that are

connected with wires.

11 Playing with the PCB view
Similarly, the PCB view offers both a different visual

experience, and as such how you move things around also

changes. Rather than the Arduino and breadboard circuit being

presented as separate entities, in this view the circuit sits atop

of the Arduino.

Adjusting the position of components is trickier here, but

this presents a more intimate look at just how the parts on the

breadboard are connected to the Arduino.

12 Use the grid
Keeping your project tidy is important, more so your

Fritzing diagram. To help here, enable the View > Align to Grid

and Show Grid options, which will assist with repositioning

your boards. How far the selected items move will depend

on which of the three views you are currently using, and your

zoom level. Repositioning is via the mouse, and fine-tuning

using the arrow keys.

Fritzing helps you to create
diagrams; it can also inform
you if there is a problem

Raspberry Pi Tips, Tricks & Hacks 101

Tips | Tricks | Hacks

Should you have

a need to place

components or

change the colour

of wires, you can

employ the Inspector

panel. With a

component selected,

use the up and down

triangles in the

Placement section

of the Inspector

panel to adjust its

x and y position.

Meanwhile, wires

can be recoloured by

left-clicking to select

and then changing

the option in the

colour box, under the

Properties option.

Detailed
placement

Above If you’ve
designed a PCB
–perhaps a new Pi
HAT – you can order
a prototype from
inside the software!

13 Autoroute assistance
While it isn’t possible to automate the creation of your

Fritzing project, the next best thing is available. While using the

Schematic and PCB views, you can activate Routing > Autoroute

to automatically connect the components. You can also press

Ctrl+Shift+A to get the same results. What this means is that all

you need to do is place the components – the autoroute tool will

do the rest for you!

14 Is your project ready?
Not only does Fritzing help you to create diagrams, it can

also inform you if there is a problem with the project. Once you

have your components in place and the wires connected, open

Routing > Design Rules Check and let the software assess the

state of the project, and report back with problems.

Any issues that come up are usually addressed by adjusting

the position of parts and wires.

15 List your parts
Large projects can run away with you. When you’re

prototyping with Fritzing or on a breadboard, it is easy to overlook

something, which is where the Bill of Materials comes in useful.

Found in the File > Export menu, selecting this creates a HTML

fi le that lists the all of the items included in the diagram, which

means you have a clear list to refer to for shopping purposes.

16 Get a quote
Diagrams can be converted into physical entities using

the Fritzing Fab service, which can be initiated via Routing >

Fritzing Fab Quote. In the resulting box you will see information

about the size of the board, and a quote for 1, 2, 5 or 10 boards

to be printed, displayed in Euros. What this means is that a

prototype board can be designed in Fritzing and a physical copy

easily ordered!

17 Export your Fritzing project
With your Fritzing project complete, you’ll probably want

to share it with others. Sharing is possible with the Export tool,

found in the File menu, where two main options are available:

As Image and For Production. If you’re planning to print your own

circuit, use the latter option.

For sharing a JPG, PNG , SVG or PDF of the diagram, however,

select As Image and the preferred format. It’s really worth

checking out some existing projects, as there’s so much you can

do with Fritzing that you may not have even thought of.

102 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Use your Raspberry Pi as a desktop replacement PC
thanks to the increased power of the Raspberry Pi 2

Make a Pi 2 desktop PC

The Raspberry Pi 2’s increased power over its predecessor
is well-documented by now. More CPU cores and more RAM

making it six times faster is an impressive number, and you

can see the actual changes that it makes to the experience.

This power actually enables you to conduct a very simple

project that was just out of reach for the original Raspberry Pi:

a Raspberry Pi desktop PC.

All the components for it were available, but the Pi was just

a little too slow to properly give a fl uid desktop experience.

Now with the improved resources, many of the restrictions

are gone – enough of them to be able to build a Pi desktop. So

grab a Pi 2 and we’ll get started.

01 Get Raspbian
We will be using Raspbian for our desktop Pi. Not only

is it simple to obtain and easy to use, but it is supported by the

Pi Foundation and community, which means it’s going to be

the most fl exible operating system with the most choices for a

desktop. Download it from: www.raspberrypi.org/downloads.

What you’ll need
 Raspberry Pi 2

 Raspbian

 raspberrypi.org/downloads

 Keyboard

 Mouse

 Wireless dongle

 Monitor

 Case

 Powered USB hub (optional)

Raspberry Pi Tips, Tricks & Hacks 103

Tips | Tricks | Hacks

02 Install Raspbian
Once Raspbian is downloaded, you can install it to your

SD card. Put the micro SD into an SD card reader and connect it

to your main system (a PC or laptop). Open up the terminal, cd to

the location of the image and use:

 $ sudo dd bs=1M if=raspbian.img of=/dev/[location of
 SD card]

05 Software updates
Our fi rst step is to perform an upgrade on the system to

make sure it’s all up to date and working properly. To do this, open

up the terminal from the menus and use:

 $ sudo apt-get update

… to refresh the software list, followed by the next command to

then upgrade to newer software:

 $ sudo apt-get upgrade

06 Firmware upgrade
While we’re updating, it’s a good idea to upgrade the

fi rmware on the device. Still in the terminal, you’ll want to

activate the fi rmware upgrade software with:

 $ sudo rpi-update

03 Setup options
On fi rst boot there will be some setup stuff that it is

necessary you go through. The most important things to do for

this desktop are to fi rst hit ‘Enable Boot to Desktop’ and then to

extend the installation to fi ll the entire SD card. After you have

done that, do anything else that you want to do in these menus

and then reboot before moving on to the next step.

04 First boot
You will boot into a fresh version of Raspbian with the

newer interface and default apps available to use. From here

you can start using it as normal if you wish, but it is worth noting

that there are a few extra things that you should do to make it

truly desktop worthy.

Above Make sure
you set the Pi to
boot straight to the
desktop, like your
main computer

07 Extra confi guration
At this point, you might want to tweak the Pi a little

further. To bring up the initial confi guration screen, you’ll need to

go back into the terminal and launch it with:

 $ sudo raspi-config

08 Advanced options
From here you can activate some extra options that you

might need in the future. Enabling the Pi camera driver is a good

fi rst step, and you can even have it boot to Scratch if you want to

focus on fun game development. Otherwise, there are also some

overclocking options that you can consider if the system starts

getting slow for you.

Tips | Tricks | Hacks

09 Accessorise your Pi
Just setting up the operating system on the Raspberry

Pi is only a small part of the process – we also have to consider

the hardware surrounding it that will actually make it usable as

a desktop replacement.

10 Human input devices
Standard USB keyboards and mice are best suited for

this task, much more so than a lot of the wireless keyboard and

mouse combos that are popular among Pi users. However,

don’t try and save on USB ports by getting a keyboard with USB

connections of its own: the Pi cannot power USB hubs, even just

two on a keyboard.

11 Monitor to see
The Pi can output a maximum of 1080p, which in normal

display terms is 1920 x 1080. While it only outputs in HDMI, a lot of

modern monitors do have an HDMI input. If you don’t want to get

a brand new monitor though, you can always get a HDMI to DVI or

HDMI to VGA adapter.

12 Case for protection
The Pi is pretty sturdy and we’d be lying if we said

we didn’t regularly keep ours out of a case, however, it’s not

indestructible. While we’re doing a lot of different projects

involving accessing different components, a desktop Pi doesn’t

require this level of access. We like the Pimoroni Pibow cases, but

there are several other secure, protective alternatives.

13 Wireless for Internet
While some people are fi ne using wired connections,

not everyone has that luxury. Wireless dongles are a perfect fi t

for the Pi, especially now they’re almost no larger than the USB

port themselves. However, not just any dongle will work and

you’ll have to check against this list to make sure that you get a

compatible one: http://elinux.org/RPi_USB_Wi-Fi_Adapters.

14 Anything else?
Our standard desktop PC setup is complete, with

one USB port to spare. You can use that single port for USB

sticks or portable storage, or you can invest in a powered

USB hub to give yourself more connectivity options. Otherwise,

investing in a good, 2A power supply will make sure you’re never

short on power for anything.

Below You can run
a pretty decent
Minecraft server
for a handful of your
friends with the Pi
2 – great if you made
the console in the
previous issue!

Raspberry Pi Tips, Tricks & Hacks 105

Tips | Tricks | Hacks

LibreOffi ce is not installed by default,
but as the premier open source offi ce
suite, or Linux offi ce suite in general, it
is readily available to use on Raspbian,
which is useful

Above With the Pi
2, you can run a full
offi ce suite without
running into any
awkward slowdown15 Adding extra software

We’re not quite done getting our Raspberry Pi desktop

ready just yet. We need to add some extra software to make it

feel more like a real desktop. While we already have a browser

installed and some of the basics, the fi rst other piece of software

we should add is an offi ce suite.

18 XiX for music
If you need to listen to music while you work, one of the

best pieces of software to check out is XiX. It’s available on the Pi

Store. It’s a free download and you can fi nd the Pi Store in the Pi

menus to install it.

19 Pi for desktop
Now we are set up you can start properly using your

Raspberry Pi as a desktop system, while still making use of the

educational capabilities when need be. The software repository

and Pi Store should contain any other software that you would

want or need to make the most of your new Pi system.

17 GIMP for photos
This is the big one – while the original Pi was not quite

able to handle LibreOffi ce, it was useless trying to use GIMP. Now

GIMP works just fi ne, although more complex tasks might make

it slow down just a touch. Install it with:

 $ sudo apt-get install gimp

16 Work with LibreOffi ce
LibreOffi ce is not installed by default, but as the premier

open source offi ce suite, or Linux offi ce suite in general, it is

readily available on Raspbian, which is useful. Open up the

terminal and install it with the following:

 $ sudo apt-get install libreoffice

Tips | Tricks | Hacks Tips | Tricks | Hacks

106 Raspberry Pi Tips, Tricks & Hacks

What you’ll need
 A Raspberry Pi for each

room you would like to play

music in (one of these can

act as a server or a sever

can be separate)

 Ideally a USB sound card

for each Pi (a Behringer

UCA-202 is a great option)

 Speaker amplifier and

speakers to plug the Pi into

 A wired or wireless network

 A USB Wi-Fi adapter for

each Pi you want to be

wireless (an Edimax EW-

7811UN works out of the box)

The possibilities of the Raspberry Pi are

seemingly endless – but it especially

lends itself to entertainment. In this

tutorial we are going to use Logitech’s

Squeezebox Media Server and the

squeezelite client to create a multi-room

audio system. The media server can

stream audio to each squeezelite client

and synchronise the playback between

multiple clients if desired. Logitech open-

sourced the Squeezebox software after

offi cially discontinuing the hardware line.

The media server can be controlled

from a web interface or various

smartphone applications. Unfortunately,

the Spotify plugin (specifi cally the third-

party Spotify plugin by Triode) was

partially broken at the time of writing.

Search isn’t working, likely because

the Spotify API has been updated since

the plugin was last updated. Instead,

the server can be pointed at a music

directory on the Pi. You can either put

music directly onto the SD card or

connect up a USB fl ash drive or hard

drive. As you can get a 64GB fl ash drive

for around £15 you should be able to fi t

plenty on there. We will set up a samba

server on the music server so you can

copy music to it over the network,

instead of needing to disconnect the

fl ash drive and disrupt playback.

We recommend that you use a Pi 2

or 3 for the server but an older Pi or a Pi

Zero should have enough power to be a

squeezelite client.

Raspberry Pi Tips, Tricks & Hacks 107

Use a Raspberry Pi running Logitech’s Squeezebox
software to provide synchronised multi-room audio

Set up a multi-room
sound system

Tips | Tricks | Hacks

108 Raspberry Pi Tips, Tricks & Hacks108 Raspberry Pi Tips, Tricks & Hacks

01 Flash SD cards
We’re going to be using Raspbian Jessie for this. We

used the Raspbian Jessie Lite version because it is smaller

and only comes with a minimal set of software. However, it

doesn’t really matter if you use the full version, or even the

NOOBS installed version. You’ll need an SD card for each Pi

that you are using. In our case, this would be one for a server/

client, and one client.

02 Power on your Pi
It’s a good idea to power on each Pi one at a time so

you know which one is which. Log into your router / dhcp

server to find the address of your pi, or you might just be able

to SSH into it using the name “raspberrypi”. Alternatively you

can use nmap or “arp -na | grep -i b8:27:eb” to find every Pi on

the network.

03 Logging in
For each Pi, loG in using ssh mailto:pi@172.17.173.58”

pi@172.17.173.58, replacing the IP with the IP address of your Pi.

Use the password ‘raspberry’. Then set the hostname to a useful

name (such as livingroom, or musicserver): echo ‘musicserver’ |

sudo tee /etc/hostname

Then use sudo raspi-config to expand the filesystem, then

select finish and reboot. After this, hopefully you’ll be able to

log into the Pi using the name you just set. At the very least

you’ll know which one you are logged in to.

04 Wi-Fi setup
If you are using a Wi-Fi adapter then connect it up to the

Pi and then edit: /etc/wpa_supplicant/wpa_supplicant.conf

with sudo, and your editor of choice – for example: sudo nano /

etc/wpa_supplicant/wpa_supplicant.conf – then add the

following lines:

 network={
 ssid=”MYSSID”
 psk=”passphrase”
 }

If you reboot and remove the ethernet cable, the Pi should

connect over Wi-Fi.

05 Sound card setup
If you are using a USB sound card then you want it

to have priority over the built-in sound card (which is always

loaded as card0):

 pcm.!default {
 type hw
 card 1
 }

 ctl.!default {
 type hw
 card 1
 }

Then use alsamixer to set the volume to 100% because we will

use it as a line out device.

06 Install squeezelite on each client
Once you have set up Wi-Fi and USB Sound cards on

the clients (and server if that is also acting as a client), it’s time to

install squeezelite:

 apt-get update
 apt-get upgrade
 apt-get install squeezelite

That’s all it takes to set up a client. The squeezelite client will start

itself and everything else is controlled through the server, so now

it’s time to set that up.

07 Preparing music storage
We are going to store our music in /mnt/music on the

media server Pi. If you want to use a USB hard drive or flash drive

for additional storage space then you’ll need to format it and then

mount it in that directory:

Below A Raspberry
Pi running Logitech’s
Squeezebox service

can be made into a
homebrew media

server that can play
music and internet

radio stations

Raspberry Pi Tips, Tricks & Hacks 109

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 109

 sudo parted /dev/sda
 (parted) mktable msdos
 (parted) mkpart primary ext2 0% 100%
 (parted) quit
 sudo mkfs.ext4 /dev/sda1
 sudo mkdir /mnt/music
 sudo mount /dev/sda1 /mnt/music

 sudo editor /etc/fstab, add:
 /dev/sda1 /mnt/music ext4 defaults,noatime 0 2

08 Set up SAMBA share
Samba is an implementation of the file-sharing protocol

used by Windows. It is the best choice because it is supported by

Windows, Mac and Linux. This will allow you to simply drag and

drop music onto your media server from any PC.

 sudo apt-get update
 sudo apt-get install samba

 sudo mv /etc/samba/smb.conf /etc/samba/smb.conf.
original

 sudo vim /etc/samba/smb.conf:
 [global]
 workgroup = WORKGROUP
 server string = Music Server
 security = user
 guest account = nobody
 map to guest = Bad User

 [music]
 path = /mnt/music
 public = yes
 browsable = yes
 only guest = yes
 writable = yes

 sudo systemctl restart smbd
 sudo chown nobody:nogroup /mnt/music/

Make /mnt/music readable, writable and executable by all.

 sudo chmod -R 777 /mnt/music/

09 Copy music to server
You can now copy music to the server. On Windows,

Mac, or Linux the server should be visible in the “Network”

section. On Linux using the Thunar fi le browser, we had to

go to “Network” > “Windows Network” > “WORKGROUP” >

“MUSICSERVER”. Then we copy and paste the music we want

over to the server. Most fi le formats should be used but we used

320k MP3 fi les, all tagged correctly to make sure they display

properly once loaded into Logitech Media Server.

10 Confi gure Logitech Media Server
Now we have copied music to the server, it’s time to

confi gure Logitech Media Server. Logitech Media Server runs

on port 9000, we had to go to http://musicserver:9000/ in a

web browser to access the confi guration wizard. Depending

on your network setup you may need to use the IP address

of the server. You’ll need to create a mysqueezebox.com

account before you can continue. Once you have done

that, log into the server. Then navigate to where your music

collection is stored. This should be /mnt/music. Click next,

If you are having

audio dropouts then

the most likely cause

is that there is not

enough network

bandwidth available.

The easiest way to

solve this is to move

your Pi from Wi-Fi

to a wired network.

If you don’t want to

run network cables

around the house you

could try a different

Wi-Fi adapter, or

you could try using

Powerline Ethernet

adapters. You can

pick a pair of these

up for -£25 and then

add more as you

need. Commercial

devices such as the

SONOS speakers

use their own Wi-Fi

network just above

the standard 2.4GHz

range so that the

network is not

congested, avoiding

this problem. Using

5GHz Wi-Fi could

also be an option.

Having
audio
dropouts?

also set /mnt/music as the playlist folder even though there

probably aren’t any playlists in there. Finally, click Finish. If

you ever need to rescan your library you can do that by going

to settings (in the bottom right corner) and then click the

rescan button.

11 Play music
Playing music from the web browser is straightforward.

On the left hand side is your music library, and on the

right-hand side is the current playlist. In the top right corner

you can pick between players; we have musicserver, and

musicclient, but you could name these as the rooms in your

house. There is also a synchronise button which lets you group

various rooms together. Then whatever you play will play in

multiple rooms. You can also control the volume of each room

using the volume control. This means you can leave your amp

turned up fairly loud and then control the volume from your

phone or browser.

12 Control your music from a smartphone
For Android, we recommend the Squeezer app, which

can be found by searching for “squeezebox” on the Play

store. Similarly, there is also an app for Apple devices. The

app should automatically detect the server and connect to it.

From there, the drop-down box in the top-left corner will let

you select the player and the volume rocker on the phone will

control the volume of the playback.

13 Listen to the radio
Logitech Media Server is capable of playing internet radio.

There are several stations to pick from, sorted by genre, area, and

so on. These can be played from both the mobile application and

the web interface.

14 Group players on smartphone
To group players on your phone, press the menu button

in the top right corner and then select players. Then pick the

player you want to group, click the synchronise button and pick

the grouping you would like from the list. To desynchronise, do

the same thing but pick “No grouping”. You can also individually

set the volume of each room from the players menu.

Tips | Tricks | Hacks

110 Raspberry Pi Tips, Tricks & Hacks110 Raspberry Pi Tips, Tricks & Hacks

15 Configure podcasts
If you want to listen to podcasts then you need to enable

the “Podcasts” plugin in the settings page of Logitech Media

Server. Tick the plugin and click the Apply button. You will then

need to restart Logitech Media Server, which you can do with:

 sudo systemctl restart logitechmediaserver

The web interface may take a few seconds to come back so

don’t worry if this is the case.

16 Add podcast RSS feed
To add a podcast to listen to you will have to find the RSS

feed of the podcast. Our expert is a fan of The Smoking Tire,

which is a podcast about cars and driving. To add a podcast feed,

you need to go to the Settings page of Logitech Media Server,

then to the Podcasts tab. Once there, paste in the URL for the

RSS feed of your podcast.

17 Test podcast playback
Podcasts show up in My Apps > Podcasts, and work from

both the web interface and the mobile app. As you can see here,

a list of podcast episodes sorted by most recent first will be

shown, you simply have to click on them and press play.

Raspberry Pi Tips, Tricks & Hacks 111

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 111

#!/usr/bin/env python2

from pylms.server import Server
from pylms.player import Player
import time
import os

class MusicSuspender:
 def __init__(self, phone_ip):
 self.server = Server()

 connected = False
 while not connected:
 try:
 self.server.connect()
 connected = True
 except:
 pass

 self.phone_ip = phone_ip
 self.prev_state = “playing”

 def stop(self):
 print “Stop”
 if self.prev_state == “stopped”:
 return

 for p in self.server.get_players():
 p.pause()

 self.prev_state = “stopped”

 def play(self):
 print “Play”
 if self.prev_state == “playing”:
 return

 for p in self.server.get_players():
 p.play()

 self.prev_state = “playing”

 def ping(self):
 return os.system(“ping -c 1 {} > /dev/null”.format(
 self.phone_ip)) == 0

 def loop(self):
 while True:
 if self.ping():
 self.play()
 else:
 self.stop()

 # Sleep for 5 seconds
 time.sleep(5)

if __name__ == “__main__”:
 ms = MusicSuspender(‘172.17.173.6’)
 ms.loop()

Full code listing
There is a Python library for Logitech Media Server (https://

github.com/jinglemansweep/PyLMS), which allows you to

automate various tasks. Check out the code below to write an

application that pings your phone and pauses the players once

your phone drops off the wireless network (indicating that you’ve

left the house). Once you return, the application can press play.

It makes the most sense to set your script up on the server:

 sudo apt-get install python-pip
 sudo pip install pylms
 mkdir automation
 cd automation
 touch music_suspender.py
 chmod +x music_suspender.py
 editor music_suspender.py
 Add code

Finally, make the script start at boot:

 sudo editor /etc/systemd/system/musicsuspender.service:
 [Unit]
 Description=Suspend Music

 [Service]
 Type=oneshot
 ExecStart=/home/pi/automation/music_suspender.py

 [Install]
 WantedBy=multi-user.target

Then enable the service and reboot to test it:

 sudo systemctl daemon-reload
 sudo systemctl enable musicsuspender.service
 sudo reboot

Cost of
implementation
Assuming you already have an old Pi or two lying around,

this can be a fairly cheap project – there are plenty of good

quality class T speaker amps around that you can get for £20

or so. Just search ‘class T amp’ on Amazon and you’ll see

several results. These work great as long as you don’t enable

the tone controls, and they’ll easily go loud enough that your

neighbours will complain before they distort. On top of that

you’ll need some bookshelf speakers, a USB sound card,

some speaker wire and an RCA cable to connect the sound

card to the AMP.

The cost of the bookshelf speakers depends on the quality

that you are after. Alternatively, you could even get a set of 2.0

or 2.1 PC speakers with the amp built in. You can get these for

£25 on the cheap end, which means you just need a Pi with

network connectivity, and a sound card.

Import Import required libraries.
The fi rst imports are the Server and

Player classes from PyLMS. Time
is used to sleep so the while loop

doesn’t use all the cpu time, and os
is used to call the ping command.

Class Create a class for the
application. Take the IP of your

phone (needs to be statically
assigned) to ping, connect to

the server (running on the same
machine) – waiting until we

can connect in case the scripts
starts before the current

server. There is also a variable
to keep track of the current

state so we don’t keep sending
play or pause commands if the

state is the same.

Ping Ping function that
calls the ping command

with ‘-c 1’ to only send
one ping. Also pipes it to

/dev/null so there is no
output to the console.
If ping returns 0 then it
was successful, hence
the comparison to 0 at

the end.

Loop Create an instance of the
MusicSuspender class with the

IP of your phone as an argument.
Call the loop function, which will

run infi nitely.

Automate Logitech Media Server

Start your script

Hacks
114 50 Ways to Hack

your Raspberry Pi

140 Code a Tempest clone in

 FUZE BASIC Part 1

144 Code a Tempest clone in

 FUZE BASIC Part 2

148 Code a Tempest clone in

 FUZE BASIC Part 3

152 Capture photos at night with the

NoIR Pi camera

156 Learn to locate phones by

using Bluetooth

• Check humidity

• Make an 8-bit theme tune

• Make a Minecraft Photo Booth

122 10 awesome Raspberry Pi upgrades

128 Hack a robot with Pi-mote

132 Self-driving RC car

136 Build a Pi cluster with Docker Swan

156

112 Raspberry Pi Tips, Tricks & Hacks

Buy incredible
add-ons and

upgrades

Learn how to
take photos

at night

122

152

Thirty years on and
BASIC, or FUZE
BASIC, presents
a modernised
version of
the original
classic

140

Recreate the
classic game

Tempest

Hack a robot
with your Pi

128

Raspberry Pi Tips, Tricks & Hacks 113

So you have a Raspberry Pi and have
now mastered the basics of setting it up,
accessing the Desktop, getting online and
loading the various pre-installed software.

This tutorial is packed full of 50 skills, codes

and hacks to try on your Pi, which span two

pieces of software and one additional piece

of hardware. First up is the Raspberry Pi

SenseHAT which was initially sent to the ISS

station to run code and experiments. This add-

on board will cost you around £26.50 ($57.99

from Amazon in the US) and provides a wide

array of sensors, including a temperature

sensor and an LED matrix. Get to grips with

the essential code in order to program it and

then you can create your very own real time

humidity sensor and display.

Next learn how to code music with Sonic Pi

and compose your very own tunes. You can

choose to create these sounds from scratch

or use starter programs as a building block.

Discover ‘live loop coding’ where, just like a live

performance, you can code music in real time.

Then learn how to master Minecraft hacks

in order to customise your game and your

player’s abilities. Transport them over large

distances when they step on a certain block

or discover how to create a house of any size,

with the single click of the mouse button. You

will even learn how to integrate the Pi Camera

hardware within your world and the Minecraft

environment to create a real life photo-booth

which is controlled from within a virtual

Minecraft photo-booth.

HACK
YOUR PI

WAYS TO

Fifty ways to squeeze more out of your
Raspberry Pi hardware and software

Tips | Tricks | Hacks

02 Installing and deleting software
When online your Raspberry Pi can access a wide range

of software and programs. Many of these are stored in a publicly

maintained repository. If you know the name of the software you

require, for example, the chrome browser, then type:

 sudo apt-get chrome

To delete unwanted software use:

 sudo apt-get purge chrome

To fi nd search for software with a keyword use:

 sudo apt-search cache chrome

03 Display your IP address
To fi nd your IP address, use a simple script to print it to the

console window. This happens just after boot up, before your

login credentials are entered. Open the LX terminal and type:

 sudo nano /etc/rc.local

Add the following script to the fi le before saving and closing:

 # Print the IP address
 _IP=$(hostname -I) || true
 if [“$_IP”]; then
 printf “My IP address is %s\n” “$_IP”

04 Access the command line from your
Laptop

Sometimes you will not have access to a display or your Pi may

be embedded in a project and not accessible. Instead, use your

laptop. First install a program called Putty from: http://www.

chiark.greenend.org.uk/~sgtatham/putty/download.html.

Open Putty, type in the IP address of your Pi, enter your

username and password. You can now directly access the

terminal window of your Pi.

05 Raspberry Pi 7” Touchscreen Display
Should you require a display, check out the offi cial Pi

touchscreen. This 800 x 480 display connects via an adapter

board which handles power and signal conversion supporting

10 fi nger touch and on screen keyboard. Only two connections

to the Pi are required; power from the Pi’s GPIO port and a ribbon

cable that connects to the DSI port. It’s also available in a range

of different colours!

An easy way to fi nd
your IP address
is to use a simple
script to print it to
the console window.
This happens just
after boot up

Five essentials
before you start

01 Update your Pi
Before you start a project or hack, ensure your Pi software

and operating system are up to date. Open the LX terminal, type:

 sudo apt-get update
 sudo apt-get upgrade

Raspberry Pi Tips, Tricks & Hacks 115

116 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Hack the Raspberry Pi SenseHAT hardware that
British Astronaut Major Tim Peake is using on the
International Space Station

Get to know the
Raspberry Pi SenseHAT

The SenseHAT

06 Countdown has begun
Display a simple countdown from 10 to 0 on the

LED matrix. Convert the number values to a string

to show them on the Matrix. Open Python 3 and

add the following code:

 import time
 from sense_hat import SenseHat
 for i in reversed(range(0,10)):
 sense.show_letter(str(i))
 time.sleep(1)

08 Scroll text
Open your Python editor and enter the code, save

and then run it to scroll your message across the SenseHAT

LEDs. Adjust the colour of the message and the time it takes to

scroll by including the lines, text_colour=[255, 0, 0]) (setting the

RGB value) and scroll_speed=(0.05)

 from sense_hat import Sense HAT
 sense = SenseHat()
 sense.show_message(“Linux User and Developer”,
text_colour=[255, 0, 0])

09
Multicolour 8x8 LED Matrix
Sixty-four fully customisable

multicoloured LEDs. Useful for displaying

data from the sensors, programming simple

animations and games or scrolling text

messages across.

11
Accelerometer Measures linear

acceleration in the directions of up,

down and across. This data can be used to

track movements such as tilt or modified to

create a controller for a game.

12
Temperature sensor A built in

temperature sensor which is accurate

to ~2°C in the 0-65°C range. Useful for

measuring the temperature of your surrounding

environment and detecting changes in

temperate states.

10
Magnetometer Works much like

a compass detecting magnetic field

strengths. Readings can be used to measure

magnetic fields and find compass points

relative to North.

Above Create a simple countdown device or reverse it for a timer

116 Raspberry Pi Tips, Tricks & Hacks

Enable max
current draw

 If you have a good power supply
(ie 2 amps or more) and want to

connect a current-heavy device,
add the line max_usb_current=1

to /boot/config.txt, to set the
max current over USB to 1.2

amps instead of the
default 600mA.

07

Raspberry Pi Tips, Tricks & Hacks 117

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 117

Tips | Tricks | Hacks

Display the humidity in real
time on the LED matrix

Measure your environment with
these SenseHAT sensors

Essential SenseHAT
measurements

14 How humid is it?

13 Display an image
The LED matrix can be used to

create simple images. Assign the colours

using RGB values and then create a

simple array of the image, for example a

question mark:

 from sense_hat import SenseHat
 sense = SenseHat()
 X = [255, 0, 0] # Red
 O = [255, 255, 255] # White

 question_mark = [
 O, O, O, X, X, O, O, O,
 O, O, X, O, O, X, O, O,
 O, O, O, O, O, X, O, O,
 O, O, O, O, X, O, O, O,
 O, O, O, X, O, O, O, O,
 O, O, O, X, O, O, O, O,
 O, O, O, O, O, O, O, O,
 O, O, O, X, O, O, O, O
]
 sense.set_pixels(question_mark)

16 Under Pressure
Atmospheric pressure is the force the air has on

a surface, in this case the SenseHAT. Use the pressure

sensor for a reading of the atmospheric pressure. The

higher the reading the more force is being exerted:

 from sense_hat import SenseHat
 sense = SenseHat()
 pressure = sense.get_pressure()
 print(“Pressure: %s Millibars” % pressure)

17 Take a temperature reading
The SenseHAT has a heat sensor which can read

and return the temperature. The sensor is fairly close

to the CPU and it may pick up some of the residual heat.

However, on the whole the reading is sound:

 from sense_hat import SenseHat
 sense = SenseHat()
 temp = sense.get_temperature()
 print(“Temperature: %s C” % temp)

18 Where is North?
Use the magnetometer to fi nd your position in

relation to North. Use a while loop to check the position,

rotate the senseHAT to see the compass reading change:

 from sense_hat import SenseHat
 sense = SenseHat()
 import sleep
 while True:
 north = sense.get_compass()
 print(“North: %s” % north)
 time.sleep(1)

19 Accelerometer
The accelerometer is used to measure how your

SensHAT is moving and tilting, used in projects such as

the Apollo-soyuz where you can rotate a 3D model of the

soyuz rocket (www.github.com/astr-pi/apollo-soyuz)

 from sense_hat import SenseHat
 sense = SenseHat()
 while True:
 accel_only = sense.get_accelerometer()
 print(“p: {pitch}, r: {roll}, y: {yaw}”.
format(**accel_only))

21 Checking the humidity
Use this simple code to return the humidity of the

environment. Test it by ‘huffi ng’ on the humidity sensor:

 from sense_hat import SenseHat
 sense = SenseHat()
 humidity = sense.get_humidity()
 print(“Humidity: %s %%rH” % humidity)

Step one: Set up

This program takes a humidity reading

and displays the results on the LED

display. First import the SenseHat

Library and then create two variables,

one for the LEDs colour when they are

on and one for when they are off:

 From sense_hat import SenseHat
 sense = SenseHat()
 sense.clear()t
 on_pix = [255,0,0]
 off_pix = [0,0,0]

Step two: Reading the Humidity

Now take a humidity reading and round

it to one decimal place. Then create a

list called ‘leds =[]’ to store the number

of LEDs that need to be turned on. Since

there are only 64 LEDs, divide the top

humidity of 100 by 64 to return a ratio:

 while True:
 hum = sense.humidity
 hum = round(hum,1)
 if hum > 100:
 hum = 100
 leds = []
 ratio = 64 / 100.0

Step three: LEDs On or Off

For this step you need to use the

humidity reading to calculate the

number of LEDs to turn on. This uses

the code on_count = int (ratio*hum).

The number of LEDs which are turned

off is 64 – the number turned on:

 on_count = int (ratio*hum)
 off_count = 64 - on_count

The three colour values
used to refer the amount
of Red, Green and Blue,

where 255 is the maximum
value. White is [255,

255, 255]

20

Raspberry Pi Tips, Tricks & Hacks 117

Tips | Tricks | Hacks

Step four: Creating a list of LEDs

Now you have the total number of LEDs

that need turning on, extend the values

into the list created in step two. Do the

same for the LEDs that are required to

be turned off. Finally, set the pixels to

display on the LED matrix:

 leds.extend([on_pix]*on_count)
 leds.extend([off_pix]*off_count)
 sense.set_pixels(leds)

Run the program and watch the LED

display. Try ‘huffi ng‘ onto the humidity

sensor, and see what happens.

sudo raspi-confi g can
be used to change

several options, like
enable the camera,

overclock the Pi, and
change boot options.

15

118 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Above Code musical notes either by number or letter

A live coding synth that features numerous samples,
notes and sounds at your fingertips

Start coding music
with Sonic Pi

28 Playing a note
Melodies or tunes are built out of individual notes. Sonic Pi

makes it very easy to play a note, well code a note, simply type ‘play

60’ into the coding window and press Run.

This note is C. Change the values of the number to change

the note, for example try ‘play 70’ or ‘play 60’. Then try some

of your own. Instead of using the note number you can also

write the name of the note that you want to play, for example,

‘play :C’, will play the same note C as ‘play 60. To make the note

higher add the octave number after the letter. For example to

play the 4th octave D, type, ‘play :D4’. You can shorten the length of

the note using the ‘release’ code. For example try, ‘play :C6, release:

0.2’. Increase the duration by increasing the number.

29 Playing notes together
Notes can be combined and played together to create chords. This is simple, try

these two together:

 play 60
 play 62

The chord is an interesting drone like sound created by playing two similar tones at

the same time. If this is not your musical preference you can create a more traditional

The Sonic Pi Interface
23

The coding window Musical

composition is easy with code, simply

write your own, follow a tutorial or copy over one

of the wide range of examples to get you started.

25
Samples, examples, synths and
more Over 131 built-in samples, synths

and FXs; with more coming, to give you any sound

you want. Customise these further with fully code-

able options.

24
Record and Export Save and share

your compositions as code to allow others to

edit or, record them and export your audio in WAV

file format.

26
Learn more Sonic Pi holds a massive

selection of tutorials covering the basics

for beginners and more advanced skills for

seasoned pros.

Above Code chords by combining several notes or codes together

Why not try interacting
with Minecraft, load both
programs and in the Sonic
Pi code window add mc_
message “Hello Minecraft

from Sonic Pi!”, then
click Run...

22

The sync
command ensures

everything has been
flushed to permanent

storage from the cache.
It’s useful to run after
updating packages,

for example.

27

Raspberry Pi Tips, Tricks & Hacks 119

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 119

Modify the instruments, alter
sounds and add beats

Five tips to take
your music coding
further

33 Play and change the instrument
To play a note use the code ‘play 90’. To change the

sound or instrument add the code ‘use_synth saw’ where

‘saw’ is the name the synth. (Other synths are listed

under the Synth tab.) This affects only the calls after

the line, the fi rst note remains the default sound:

34 Samples
Within the samples tab are a wide range of

drum beats, riffs and ambient sounds. Scroll down to

‘sounds for looping’ and fi nd the sample named, ‘sample

:loop_mika’. In the coding window use the auto_complete

function which lists the samples and select one. Begin by

typing, sample :loop_ and select mika from the list. Press

Run to play, then try other samples too.

35 Examples
Sonic Pi is packed full of example codes to get you

started. Select your example then copy and paste it into the

coding window. Click Run and then you can play, modify or

tweak as you desire.

36 Iterations
Samples and notes can be played a specifi c number of

times using iteration. From the samples select bd_haus, add

this and Run. Note that the beat only plays once. To make it

play a set number of times move to line one and add, ‘5.times

do’. Then indent line two, on line three add a short pause

using sleep 0.5. Finally add an ‘end’ on line four:

 5.times do
 sample :bd_haus
 sleep 0.5
 end

37 Live Coding
Live coding enables you to code music in real time.

Create a simple beat and add it to the ‘live loop’. The music

starts and as you change the values in your code the music

changes in real time. Try the code below and change the rate,

try 0.5, 2 or even -1, press Run and the listen to the changes.

Edit the sleep time too:

 live_loop :crazy_hiss do
 sample :vinyl_hiss, rate: 1
 sleep 2
 end

sounding chord, such as C Major. Look up

any chord structure or notes online. The

chord of C Major is built up of the single

notes, C, E and a G:

 play :C, release: 1
 play :E, release: 1
 play :G, release: 1

Code a simple Live Loop
reminiscent of 8 Bit games

32 8 bit Theme Tune

Step One: Set up the live loop

Set up a live loop called trance on

line one and add the bass trance

sample on line two. Code a short

delay using sleep 0.8 on line three,

then end the loop on line four, click

Run. Live looping enables you to

code as you listen so keep the loop

playing through the next steps.

Step Two: Speed up, add notes

On line three reduce the sleep time

to 0.2 to speed up the beat. Use the

‘play choose’ code on line four to

pick from a selection of notes. Play

around with the values until you have

some that complement the beat.

Change the instrument by adding the

line ‘use_synth’ on line fi ve. In this

example the chiplead synth provides

a nice nostalgic 8 bit feel. You may

want to now edit the notes in the

‘play choose’ line to complement the

melody and changes you have made.

Step Three: Flip for

the beat

Sonic Pi can pick between which

sample to play using the ‘if one_

in(2)’ code. This adds a sense of

randomness to the music and also

to when the samples are played.

Sonic Pi does this by selecting either

sample one or sample two. Add the

line and two samples of your choice

to complete your piece:

 #8 bit music
 live_loop :trance do
 sample :bass_trance_c
 sleep 0.2
 use_synth :chiplead
 play choose([40, 40, 60, 70,

73])
 sample :elec_snare
 else
 sample :drum_tom_hi_hard
 end
 end

Raspberry Pi Tips, Tricks & Hacks 119

Code a full scale using
play_pattern_timed

scale(:c3, :major, num_
octaves: 3), 0.125, release:
0.1 where c3 is the starting

note, and num_octave is
how many octaves to

play to.

31

Tips | Tricks | Hacks

30 Adding a pause
You want to be able to play notes

individually as part of the melody. Use the

sleep function to add a pause between

notes. You can add a customisable pause

before the next note. To add a pause of one

second use:

 play :C
 sleep 1
 play :G

Depending on the length of the first note

the pause may sound shorter. Add a short

release to lengthen the delay and make the

first note more staccato. Default value for

the release option is one:

 play :C, release:
0.2

 sleep 1
 play :G

Above Compose melodies or tunes by using
delays to add rhythm

 play 90
 use_synth :piano
 play 80

120 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Hack Minecraft with code to modify, enhance
and make your own games

Master Minecraft Hacks

Know the Minecraft coding
environment

40
Python Programs Use Python scripts to manipulate

the Minecraft world and develop interactive challenges,

responsive environments and superhuman player mods.

42
Size matters Running Minecraft in a maximized

window will hide your code and render the mouse out of

sync. Best to keep the window reasonably small so you can view

both the code and the action.

41
Minecraft SoThe Raspberry Pi OS image comes with

a basic pre alpha version of Minecraft pre installed and

ready to play. It is a stripped down version of the classic game

but is suffi cient as a coding playground. For a more rich and

immersive version check out Minetest at http://www.minetest.

net/

38 Blocks have ID numbers
Within the Minecraft environment each block has a name

and an ID number which is used for reference. You can retrieve

the block ID using mc.getBlock(p.x,p.y-1,p.z) which returns the

block type you are stood on. This is useful for working out where

you are in the world and how close to other elements you are.

You can then code the player to respond for example, if they are

stood on grass it trampolines them into the air:

 from mcpi import minecraft
 mc = minecraft.Minecraft.create()
 while True:
 p = mc.player.getTilePos()
 b = mc.getBlock(p.x,p.y-1,p.z)
 if b == 2:
 mc.player.setPos(p.x, p.y+20, p.z)

Above Find the block ID and spring into the air

39 Know where your player is
When playing Minecraft your player inhabits a three

dimensional environment. The ‘x’ axis, left and right, the ‘y’ axis

up and down and the ‘z’ axis for forward and backwards. As you

move along any these your position is displayed at the top left of

the screen as a set of three co-ordinates. These are extremely

useful for checking where the player is and can be collected and stored using pos =

mc.player.getPos(). This code returns the position of the player, but can be applied to

fi nd any block in the game. Using this method you can code hacks that measure the

distance of a player from a location, trigger events or actions when a you stand on a

particular block and even teleport the player.

Tips | Tricks | Hacks

Essentials for hacking your
Minecraft world

Five Minecraft
hacks

46 Finding your Location
To manipulate your environment, you fi rst need to

know where you are positioned. This uses the mc.player.

getPos() code to gather the X, Y, and Z value of your

location and prints the values of your position:

 from mcpi import minecraft
 mc = minecraft.Minecraft.create()
 import time
 while True:
 time.sleep(1.0)
 pos = mc.player.getPos()
 print pos.x, pos.y, pos.z

47 Send a player to a position
Now you know your position you can automatically

move the player to another position using mc.player.

setPos. In the example below the player is transported

forward 100 blocks:

 from mcpi import minecraft
 mc = minecraft.Minecraft.create()
 x, y, z = mc.player.getPos()
 mc.player.setPos(x, y+100, z)

48 Set a Block
Your player can place a single block using the

setBlock command. Find your position and then set the

block where you are stood. In this example 38 is the block ID

for fl owers:

 while True:
 x, y, z = mc.player.getPos()
 mc.setBlock(x, y, z, 38)
 time.sleep(0.1)

49 Set Blocks
You may want to place more than one block at a time,

this uses the setBlocks code. Find your position, add the

position where the blocks will stop and include the ID of the

block you wish to use, in this example block number one

is stone:

 x, y, z = mc.player.getPos()
 mc.setBlocks(x+1, y+1, z+1, x+11, y+11, z+11, 1)

Above Send messages from the Minecraft World or to
another player

Use buttons to trigger the

hacks. Combine this with

a wearable like a glove for a

Minecraft Power Glove:

http://www.tecoed.co.uk/

piglove-minecraft-power-

up.html

43

50 Interact in another player’s world
It is fun hacking your own world, but how about

hacking another player? In a networked game fi nd the IP

address of the other player using sudo ifconfi g, note down

their address. In your code add the IP address to the following

line, mc = minecraft.Minecraft.create(192.168.1.45) All your

hacks will now appear in the other player’s world.

Trigger Minecraft to take your picture
with the PiCamera

45 Minecraft PhotoBooth

Step One: Create a booth

In Minecraft create a simple box as a

photobooth. Walk inside and note the x,

y and z co-ordinates displayed in the top

left of the screen. This is the block you

are stood on; this is the trigger block.

Open Python and add the code:

 from mcpi.minecraft import
Minecraft

 from picamera import PiCamera
 from time import sleep
 mc = Minecraft.create()
 camera = PiCamera()
 mc.postToChat(“Find the
photobooth”)

Step Two: Take the picture

Now add the code to check your current

location, if you are standing on the

trigger block then a ‘smile’ message is

displayed. The camera preview beings

and then the photo is taken. It is saved

in the /home/pi named as selfi e.jpg’.

Don’t forget to smile!

 while True:
 x, y, z = mc.player.getPos()
 if x >= 10.5 and y == 9.0 and z
== -44.3:

 mc.postToChat(“You are in the
photobooth!”)

 sleep(1)
 camera.start_preview()
 sleep(2)
 camera.capture(‘/home/pi/selfie.
jpg’)

 camera.stop_preview()
 mc.postToChat(“Check out your
picture”)

 sleep(3)

44 Display a message
Messages can be displayed in the Minecraft

environment to keep players up to date with what is

happening. This uses the code,

mc.postToChat() where the message to be displayed is

placed in-between the two brackets:

 from mcpi import minecraft
 mc = minecraft.Minecraft.create()
 mc.postToChat(“Hello world”)

Messages are also useful for relaying data back to the player, for example, your current

location or the block ID which you are stood on or how far away from a particular block

you are standing.

Raspberry Pi Tips, Tricks & Hacks 121

Tips | Tricks | Hacks

122 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

From solar power packs and ePaper displays to near-fi eld 3D
gesture control, here are ten unmissable add-ons for your Pi

In its short life so far of just over three years, the Raspberry
Pi has been an absolute game changer – not just as a piece
of reduced price hardware, but for nurturing a community of
like-minded individuals with a common goal: learning and
making awesome stuff!

We can’t recall the number of times we’ve browsed over to

the Raspberry Pi blog and been blown away by the brilliance of

a new project. From sorting Portuguese mail to making bullet

time rigs, there are a lot of incredible projects out there – more

and more are surfacing every day. People often ask what they

can do with a Raspberry Pi and it is actually sometimes diffi cult

to articulate an answer to that question, as the use cases are so

broad that it is hard to do the Raspberry Pi justice.

When comparing the Raspberry Pi to your average off-the-

shelf computer or mobile device, the brilliance of the Raspberry

Pi comes down to its upgradeability and the amount of

customisation that is possible. With a smartphone or tablet you

can get a trendy case or some cool headphones to go with it, but

the customisation with the Raspberry Pi goes far further than

that – both in software and hardware. A lot of projects you look at

appear to actually be the real-life manifestations of a childhood

dream. That ability to turn what used to be dreams into reality is

what makes the Raspberry Pi so well loved.

Here we take a look at ten of our favourite Raspberry Pi

upgrades, which will help you bring your ideas to life and serve

as some inspiration for your next project!

Tips | Tricks | Hacks

Fully protect your Pi

The Raspberry Pi is a durable and reliable little

computer, especially when you consider that

it is just a populated circuit board with no real

protection. However, there may be times where you

want to give your Pi a nice shell. Maybe because you

want your Pi-based home theatre to look more sleek

next to all of your other electronics, or maybe you

just want to keep the dust off your tiny computer

when carrying it around in your pocket.

The Short Crust Plus is one of our favourite cases

for the Model B+ and 2B Raspberry Pis due to its

sleek, tidy design and well thought-out features.

It is also easy to use – the Pi itself snaps into place

inside the case and the lid also clicks into place.

Each case comes with a set of self-adhesive

rubber feet and a free extension that enables you

to increase the height of the case in order to accept

any add-on boards you might be using.

£8.99 / $15.95 Available from:
bit.ly/1ICXbvw

Short Crust Plus

Portable &
solar power

You can now get hold of an elegant little add-on board that lets you

take your projects off-grid and away from mains power sources.

PiJuice is compliant with the Raspberry Pi HAT (Hardware Attached

on Top) specifi cation and makes use of a slim, off-the-shelf mobile

phone battery, and some intelligent charging and power circuitry, to

make your Pi truly portable. There’s also a version called PiJuice Solar

that enables solar recharging and is even capable of taking inputs

from other renewable energy sources.

PiJuice also has a powerful ARM Cortex M0 processor that provides

deep sleep functionality, a real time clock, watchdog timers and plenty

of other very useful features.

The firmware and GUI (graphical user

interface) that comes with the PiJuice communicate

with the common ACPI (Advanced Configuration and Power

Interface) battery and power APIs for tight integration with Raspbian.

PiJuice only uses a I2C power sand one GPIO pin, so most of the GPIO pin

bank is left free for use with other projects. It comes as standard with a

stacking header to make it extremely simple to add other HATs or add-on

boards on top. PiJuice will enable you to make a variety of awesome

projects – check out the PiJuice Instructables page: bit.ly/1e2CoGE.

£25 / $39 Available from:
bit.ly/1Fb1ywy

PiJuice

Raspberry Pi Tips, Tricks & Hacks 123

Tips | Tricks | Hacks

124 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Power switch &
file-safe shutdown

The Raspberry Pi has been so popular, in part,

because of the extremely good value for money

of the hardware. It packs a lot of punch for the

price point and, because it is designed by a

charity, they don’t need to infl ate the price with

high profi t margins as much as would be done

with a more commercial product. Unfortunately,

as with anything low-cost, some compromises

had to be made in order to bring it in at such an

affordable and small form factor.

When comparing it to your more standard

desktop or laptop computer, one thing that it is

obviously lacking is a power switch and power

management functionality. It is surprising how

something as simple as a power switch can be so

very useful, and it is not until you do not have one

that you realise this!

The Pi Supply Switch is a self-solder kit

which provides an on, off and soft-off (fi le-

safe shutdown) button to give you basic power

management functionality for your Pi. With some

provided sample scripts you can make sure

your Pi is correctly shut down when you switch

off – without the need to open any menus or

issue any commands in the terminal – and the

circuitry in the switch ensures that power is only

removed after the Pi has been shut down. As

well as making it more convenient for you, it also

reduces the possibility of corruption to your SD

card from prematurely pulling the power cable.

£15 / $23.10 Available from:
bit.ly/1RXHROn

Pi Supply Switch

See in the
dark with infrared

The CSI connector on the Raspberry Pi (between the 3.5 mm jack

plug and HDMI connector on the most recent models) enables you to

connect a camera module directly without the need for a USB-powered

webcam. The camera modules that you can connect here use less power

and, as you would expect from the Raspberry Pi Foundation, they come in

an impressively small form factor – 25 x 24 x 9 mm, weighing in at around

three grams (not including the cable).

As you would expect, there is a ‘normal’ camera module on offer (and

by normal, we mean one that captures visible light) with some impressive

stats – a 5 MP fi xed focus camera, which supports 1080p30, 720p60 and

VGA90 video modes (full specs here: bit.ly/1Gy3D8q). When the camera

module was fi rst released, some people clearly were not happy with a

visible light camera and had some other (very cool) applications in mind –

so they took apart the tiny camera sensor and removed the infrared fi lter

before putting it all back together again. Painstaking work which obviously

voids the warranty, but so many people were doing it that the Raspberry

Pi Foundation took notice and started doing it themselves, eventually

releasing a new infrared camera module – Pi NoIR.

There are some fairly commonplace nighttime uses for infrared video,

and if you pair your Pi NoIR with some infrared LEDs (check out the Bright

Pi add-on board for this), then you can easily use it for a night vision

security camera or a nocturnal animal monitoring setup. Perhaps most

amazingly, if you use the infrared camera in the daytime, it can actually be

used to monitor the health of green plants (bit.ly/1QnZdFG).

£16.80 / $29.95 Available from:
bit.ly/IQyeC4

NoIR Infrared Camera

Tips | Tricks | Hacks Tips | Tricks | Hacks

Movement for
your camera rig

The camera module and Pi NoIR we look at on the opposite

page are some pretty essential upgrades to have in your

Raspberry Pi toolbox, but what happens if you want to move

the camera around to get a different viewpoint? This would

be useful in a multitude of projects, such as a robot with a

movable camera or an Internet-connected webcam that you

can control via a web interface (many IP cameras used for

security applications already have a pan-tilt feature, in fact).

The Pi-Pan from Open Electrons is a pan-tilt mechanism

for the Raspberry Pi that enables you to articulate the camera

by an impressive amount – 110 degrees from top to bottom

and 180 degrees from left to right. The kit includes a well

considered array of hardware, including a servo driver board,

the servo motors required for the actuation and mounting

hardware for the camera and servos. On the software side,

there are libraries in Python and Scratch so it is easily fl exible

enough for most projects.

One of the most impressive applications you could use

this for is an OpenCV-based motion detection and face-

tracking camera. There is sample code available on the

openelectrons.com forum and it looks like a truly great

project to try (bit.ly/1JJpXLe).

£45.99 / $39.99 Available from:
bit.ly/1dwpEr2

Pi-Pan Pan Tilt
Mechanism

High quality
audio for your Pi

As an educational tool, the Raspberry Pi is pretty much unparalleled due to

the support of the very large community that surrounds it. As a high quality

audio device, however, you may think it is lacking due to the fact it only has

a 3.5 mm stereo output that isn’t tuned for high fi delity.

Due to its low cost, small footprint and its ability to act as a home media

centre, music and video streaming server and much more, you have probably

dreamed of enhancing the audio and taking your setup to the next level. The

good news is that the clever folk at the Raspberry Pi Foundation, from the

second revision of the original Model B, have provided access to the I2S pins;

initially on the separate P5 header, and now on the A+, B+ and 2B models it is

available from the main 40-pin GPIO header.

I2S is a communications protocol designed specifi cally for audio devices

and has enabled a number of companies like HiFiBerry and IQaudIO to

create high quality audio add-ons for the Raspberry Pi. The HiFiBerry

DAC+, for example, is an add-on which brings a high resolution (192

kHz, 24-bit) Burr-Brown digital-to-analogue converter to your Pi. It has

hardware volume control using Alsamixer, among other features, and as it

is a HAT-compatible board. It works plug-and-play out of the box with the

latest Raspberry Pi fi rmwares, and it works with all the popular operating

systems for both standard use and media playback, such as Raspbian,

Arch Linux, OSMC, OpenELEC, Volumio, Pi MusicBox and many more. If

you are serious about your audio quality and want a high quality, low cost,

Internet-connected solution, then you no longer have any excuse – you can

build your own for under £100!

£30 / $34.90 Available from:
bit.ly/1L1hh4T

HiFiBerry DAC+

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 125

Tips | Tricks | Hacks

High definition
display & audio

Finding the right display for your project can often be a bit

of a pain. We have covered the HDMIPi in a previous issue

(146; bit.ly/1Gb9LNs), which is a fantastic 9-inch HD screen

for your Raspberry Pi, and it really was wildly successful on

Kickstarter (kck.st/1CuIjwd).

If you want to take things one step further, Adafruit have

a 10.1-inch offering that just can’t be missed. It features a

beautiful 1280 x 800 (so slightly higher than 720p) resolution

IPS display with a very wide viewing angle. It has mounting

tabs to enable you to easily fl ush-mount it within your project

and it can accept a number of different input methods –

HDMI, VGA and composite. Perhaps best of all, this display kit

also enables you to directly connect 2-, 4- or 8-Ohm speakers

without the need for a separate amplifi er or externally

powered speaker, which is very useful.

It is not the cheapest display around at $155 on the Adafruit

site, but if you need a high quality display in your project with

native audio capability then you should seriously consider

it. We are already daydreaming of a dedicated multiplayer

arcade emulator with built-in stereo audio, and we’re sure you

can come up with some cool applications too!

£110 / $154.95 Available from:
bit.ly/1HrfR1s

Adafruit 10.1”
Display & Audio

Super low-
power displays

As computers of all sizes and powers are now being embedded into pretty

much everything, electronic parts have become even more commoditised

and, happily, this is fi ltering down to display technology as well. We now

have a wealth of offerings from your standard monochrome LCDs to TFT,

OLED and AMOLED offerings.

One of the most exciting and disruptive display technologies of recent

times is ePaper/eInk. You probably know it best as the screens that go into

e-readers like the Kindle and Kobo (fun fact: the Pebble watch is commonly

referred to as an ePaper watch, but it actually uses what is known as a

Memory LCD and a very clever marketing team). You may have wondered in

the past why your iPad barely lasts fi ve hours on a charge but your Kindle

lasts for over a week, and the answer is all to do with the display. ePaper

only uses power to update what is on the screen, which means that for a

large number of applications where you don’t need to change screen

contents particularly often, it saves a lot of battery power. It would be

pretty useless for playing videos, but for e-readers, monochrome graphical

info displays, digital price tags, bus and train station signage and many

more applications, it is by far the best choice.

PaPiRus brings the low power ePaper display technology you know and

love to the Raspberry Pi in a HAT-compatible format with screen sizes

ranging from 1.44 to 2.7 inches. The ePaper fi lm used in these screens is

actually identical to that in the popular e-readers mentioned above. You

can get your hands on one for around £35 and they come with a useful

Python and command line framework. They are worth trying out if you have

any display-driven projects!

£30-65 / $47-102 Available from:
bit.ly/1f2Lzaj

PaPiRus ePaper/eInk HAT

Tips | Tricks | Hacks

126 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks Tips | Tricks | Hacks Tips | Tricks | Hacks

Control your
plug sockets

Home automation is all the rage at the moment – perhaps it is

because people are inherently lazy or maybe it’s just because

this tech is extremely fun to play with! Either way it doesn’t

really matter, as it can make our lives easier and quicker

and can automate tasks that would often be boring and

monotonous, like fi ddling with heating controls and turning

off the lights before you go to bed.

One thing that we are always told is to turn off devices

at the plug rather than leaving them on standby, as they

use a lot of electricity when not properly turned off. This is

sound advice but is not always a practical solution as the

socket is not easily accessible. This is where the Energenie

Pi-mote control starter kit comes in. It contains two remote-

controlled plug sockets which can be turned on and off with

an RF remote. What does this have to do with the Raspberry

Pi? Well you also get an add-on board to enable you to

control the sockets via software on the Raspberry Pi, which

unleashes whole new possibilities – you could set your lamps

to turn on and off automatically at specifi ed times when

you are away to avoid burglars, or create a basic web app to

control your plug sockets remotely using your smartphone.

They only come in UK and EU plug types, so if you use a

different plug then you may need to look for something else

(and maybe send Energenie a request to make more versions).

£19.99 / $31 Available from:
bit.ly/1L1kYHU

Energenie Pi-mote
Control Starter Kit

Gesture &
touch control

For a lot of projects you undertake with the Raspberry Pi, you will want

some kind of user interaction. When using the desktop GUI this is normally

done with a keyboard and mouse, but these are not always the most

intuitive input methods when you aren’t using a full desktop environment

and when you don’t need to type anything.

The pirates over at Pimoroni have created a new HAT module called the

Skywriter that enables you to add near-fi eld 3D gesture and touch sensing

to your projects for a great price. There is a Python API provided that

provides full 3D position data and gesture information (swipes, taps and

so on). Play with this for a short while and you will realise that it is a really

nice input method with a lot of potential – Pimoroni even have a video of a

home-made Ras Pi-based theremin (vine.co/v/OrUWTdd0Hlg).

There is even a larger non-HAT version of the Skywriter that is more

than twice the size and boasts a sensing distance of around 15 cm,

which means that you can mount it inside your projects behind a sheet

of acrylic or other non-conductive material and it will still work. This is

especially good if you want to convince people that your projects are

simply pure magic.

£16 / $20.95 Available from:
bit.ly/1IFt9cg

Pimoroni Skywriter HAT

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 127

Tips | Tricks | Hacks

What you’ll need
 Pi-Mote IR control board
bit.ly/1MdpFOU

 Remote controlled robot

Code a program to control a toy robot via your
Raspberry Pi and the Energenie IR board

Hack a robot with Pi-Mote

You can use a Raspberry Pi and an Energenie IR board to
make a brilliant remote and control your TV, but you can do so
much more. Welcome to the world of the IR board, where almost

anything is possible. We’ll use it to record signals from a remote

control robotic toy and combine these with pygame commands

to enable you to control your robot from your Raspberry Pi. Since

the code is Python-based, you can then develop it further, use

social media to control the robot with tweets, or install Flask to

create a web interface accessible from your mobile phone.

are advised to use a fresh SD card image with no other software

installed to reduce any software confl icts.

Boot up your Raspberry Pi and, in the LX Terminal, type:

 sudo apt-get update
 sudo apt-get upgrade

Then add a line of code to the /boot/confi g.txt fi le to enable the

LIRC IR software and IR module to interact. In the LX Terminal,

type sudo nano /boot/confi g.txt. This loads the confi g .txt fi le.

Scroll to the bottom of the text and add the following line:

 dtoverlay=lirc-rpi-overlay

Press Control and X to save the fi le, then reboot your Pi by typing

sudo reboot.

01 Update the boot fi le
Before booting up your Raspberry Pi, attach the

Energenie IR board to GPIO pins. The board slots onto the top of

the pins, the default GPIO pins used when no pins are explicitly

set are: input pin for received infrared signal = PIN12/GPIO18;

output pin for transmitted infrared signal = PIN11/GPIO17. You

128 Raspberry Pi Tips, Tricks & Hacks

Raspberry Pi Tips, Tricks & Hacks 129

Tips | Tricks | Hacks

02 Install the software
Next, install the LIRC software; this stands for Linux

Infrared Remote Control and is the program that enables you to

interact with your robot and transmit commands. Open up the

the LX Terminal again and type:

 sudo apt-get install lirc
 sudo apt-get install lirc-x

Once the installation has fi nished, you need to restart your Pi

using sudo reboot.

03 Edit the hardware fi le
Next, we need to edit the hardware.conf fi le located in

the /etc/lirc/ folder and make the changes shown below. In the

terminal window, type:

 sudo nano /etc/lirc/hardware.conf

Find the DRIVER, DEVICE and MODULES lines in the fi le, then

make the following changes:

 DRIVER = “default”
 DEVICE = “/dev/lirc0”
 MODULES = “lirc_rpi”

Press Ctrl+X to save the fi le, don’t rename it, press Y and then

return. Restart the LIRC daemon with the command sudo /etc/

init.d/lirc restart.

05 Make the lircd.conf fi le: part 1
The lircd.conf fi le contains the code or instructions to

control your device. Although you can fi nd these online, you’ll

probably have to create one from scratch. This involves running

the irrecord program, pointing your remote at the IR board and

then pressing buttons! This records the signals from your remote

and then you assign KEYS to each signal to transmit the signal to

the robot. Stop the LIRC software by typing this into the terminal:

 sudo /etc/init.d/lirc stop

04 Test the IR receiver is working
To test that the IR receiver is installed and working

correctly, you need to head to the LX Terminal and then stop the

LIRC daemon (line 1), enable the test mode (line 2) and then start

the mode 2 testing (line 3):

 sudo /etc/init.d/lirc stop
 sudo modprobe lirc_rpi
 sudo mode2 -d /dev/lirc0

Left The Pi-Mote
IR control board is
hugely versatilse
and only costs £9.99

06 Make the lirc.conf fi le: part 2
Next create your new lircd.conf confi guration fi le and

save the output. In the LX Terminal, type:

 irrecord -d /dev/lirc0 ~/lircd.conf

This will open the program which will prompt you with

instructions on how to record the signals from your remote.

The fi rst part involves you repeatedly pressing the buttons on

the remote until there are two lines of dots on the screen. This

measures and records the signals being sent from the remote.

Do this in a logical order starting at the top of the remote and

working downwards. Once the two lines of dots have been

completed, your remote has been recognised.

Pygame enables you

to create buttons

and assign actions

to them. This means

you can create and

assign buttons to

the pygame window.

You could control

the robot with

buttons instead

of keys. There is a

simple tutorial here:

pygame.org/project-

Button+drawer-

2541-.html, which

covers how to create

and assign some

interaction to the

various buttons.

Pygame
buttons

This runs a program to output the mark-space of the IR signal.

It measures the pulse and space length of infrared signals,

returning the values to the terminal. Grab the robot’s remote

control, point it at the IR receiver and then press some buttons.

You should see something like this:

 space 16300
 pulse 95
 space 28794
 pulse 80
 space 19395
 space 28794
 pulse 80

130 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

08 Rename the remote
Once saved, locate the new lircd.conf fi le in the

/home/pi folder. By default, the name of the remote on line 14 will

probably be named as /home/pi/lircd.conf. Change this: under

the heading ‘begin remote’, fi nd the ‘name’ label and rename

/home/pi/lircd.conf to something more appropriate, such as

‘Robot’. Doing this helps ensure that it is an easier process

to refer to it in the program whenever you call a movement

instruction or key name.

10 Transfer fi le without overwriting
If you have set up a lircd.conf fi le, or want to use a new

one but keep the old one, create a new confi guration fi le. This is

saved in the /home/pi folder and can be copied over to /etc/lirc.

Make a backup of the original lircd.conf fi le by creating a copy of

it, then save it as lircd_orginal.conf. In the LX Terminal, type:

 sudo /etc/init.d/lirc start
 sudo mv /etc/lirc/lircd.conf /etc/lirc/lircd_
original.conf

Then copy over your new confi guration fi le:

 sudo cp ~/lircd.conf /etc/lirc/lircd.conf

Your original confi guration fi le will now be saved as lircd_

original.conf.

11 Start to take control
Now your robot has a confi guration fi le, you can use

your remote control. Restart the LIRC with sudo /etc/init.d/lirc

restart. Now test that the lircd fi le is working by listing all the

registered KEYS stored in the fi le: irsend LIST Robot “ ”. This will

list all the KEYS that are recorded in the lircd.conf fi le.

It’s time to control your device. This uses the irsend application

that comes with LIRC to send the commands. The commands

are very simple: irsend SEND_ONCE Remote_Name Remote_

Button. For example, to make the robot walk forward, just type

this into the LX Terminal: irsend SEND_ONCE Robot KEY_UP.

This will send the ‘forward’ infrared signal and your robot will

then walk forward.

07 Make the lirc.conf fi le: part 3
The second part of the program asks you to enter the

names of the keys for each of the signals it has recorded. Follow

each of the on-screen prompts, typing a suitable name for each

of the remote buttons/ keys. For example, type ‘KEY_UP’ and

then press the corresponding up key on the remote. You will then

be prompted to type in the name of the next key – for example,

‘KEY_BACK’, in which case you would press the back key on the

remote, and so on. Keep repeating this process until you have

entered names for each of the recorded keys.

You can use a

bunch of different

robots with this

tutorial, such as the

Makeblock that’s

pictured or the

WowWee Roboquad

that our author

used. Pay attention

to the event key

setup in your code

– different robots

will have different

native functions.

The Roboquad,

for example, has a

‘Dance’ command

that you can see

about halfway down

the code listing on

the opposite page.

Robot
variation

09 Transfer the lircd.conf fi le
Now your lircd.conf fi le is ready to transfer to the /etc/lirc

folder; this is the folder that holds the hardware and lirc fi les. The

simplest method is to open your new lircd.conf, which is saved

into the /pi/home folder, and then copy and paste over the code

that you have just created. However, this will overwrite any old

confi guration fi le setup that you have. To save a previous fi le, see

the next step. In the LX Terminal, type:

 sudo nano /etc/lirc/lircd.conf

Above The infrared receiver on your
robot will look something like this

Raspberry Pi Tips, Tricks & Hacks 131

Tips | Tricks | Hacks

12 Python OS
The LIRC program enables you to control the Pi-Mote IR

control board via the command line. However, this is impractical

for coding purposes because it limits the interactions with

other hardware and software. However, good-old Python has

an OS module that enables you to control the command line

and execute command line instructions from within a Python

program. This enables you to create a program that can be

controlled by pygame, which means you can move the robot with

the arrow keys and keyboard.

13 Using Python OS
Open your Python editor and then import the OS module:

import os. Now enter the command: os.system(“irsend SEND_

ONCE Robot KEY_RIGHT”). This will permit interaction between

Python code and the Raspberry Pi’s operating system. The code

line will send the ‘move right’ command to the IR board and it will

also transmit the assigned signal, instructing the robot to walk to

the right. Test that all of the other movements work by changing

the related ‘KEY’ name at the end of the line of code.

14 Get familiar with pygame
Pygame is a cross-platform library that was created

to enable users to produce simple video games. It includes

a number of graphics and sound libraries that have been

specifi cally designed to be used with the Python programming

language. Pygame also comes preinstalled on the Raspberry Pi.

You can read more about the codes and creating games over in

the offi cial documentation: pygame.org/docs.

15 Not overwriting
Pygame runs in a window that has been preset by the

user. Before adding the Python code to control the robot, you

are going to have to set up the pygame structure. Although this

program makes use of the controls on your keyboard, you still

need to create the traditional pygame window. See the fi rst part

of the listing to the right, from the fi rst line down to runGame().

Set up the window dimensions fi rst (lines 7 and 8). Next,

initialise the pygame clock: FPSCLOCK = pygame.time.Clock().

The font size and typeface of the caption used in the window are

next: BASICFONT = pygame.font.Font(‘freesansbold.ttf’, 18).

Finally, set the caption for the window: pygame.display.set_

caption(‘ROBOT’).

17 Common errors and code recap
Now that you can use Python code to control the robot,

you can interface with a number of other modules. You could

attach a Makey Makey (makeymakey.com) and use some

spoons and forks to control your robot. You could even try

installing and using the Tweepy module (a Twitter API) to make

the robot respond to incoming tweets.

16 Restart the LIRC
For this bit, refer to the next section of code: from def

runGame() onwards. Once the game is initialised, you can set the

code to control your robot. This makes use of the get() pygame

event (see the for loop) to return the key that has been pressed.

The fi rst elif sets the event type to wait for ‘keyboard’ presses,

such as the ‘right’ key shown in the next line. Since the OS has

been imported, we use os.system(“irsend SEND_ONCE Robot

KEY_RIGHT”) to transmit the ‘move right’ signal. When you are

running the program, ensure that you have selected the pygame

window – this is small, as we have coded it to 100 x 100 pixels.

Once working, add the rest of your movements in the same way.

import random, pygame, sys
from pygame.locals import *
import os
import time

FPS = 15
WINDOWWIDTH = 100
WINDOWHEIGHT = 100

UP = ‘up’
DOWN = ‘down’
LEFT = ‘left’
RIGHT = ‘right’

def main():
 global FPSCLOCK, DISPLAYSURF, BASICFONT

 pygame.init()
 FPSCLOCK = pygame.time.Clock()
 DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))
 BASICFONT = pygame.font.Font(‘freesansbold.ttf’, 18)
 pygame.display.set_caption(‘ROBOT’)

 while True:
 runGame()

def runGame():
 # Set a random start point.
 while True: # main game loop
 for event in pygame.event.get(): # event handling loop
 if event.type == QUIT:
 terminate()

 elif event.type == KEYDOWN:
 if event.key == K_RIGHT:
 print “right”
 os.system(“irsend SEND_ONCE Robot KEY_RIGHT”)

 elif event.key == K_LEFT:
 print “left”
 os.system(“irsend SEND_ONCE Robot KEY_LEFT”)

 elif event.key == K_UP:
 print “Forward”
 os.system(“irsend SEND_ONCE Robot KEY_UP”)

 elif event.key == K_DOWN:
 print “Back”
 os.system(“irsend SEND_ONCE Robot KEY_DOWN”)

 elif event.key == K_SPACE:
 print “STOP”
 os.system(“irsend SEND_ONCE Robot KEY_STOP”)

 elif event.key == K_d:
 print “Dance Baby”
 os.system(“irsend SEND_ONCE Robot KEY_D”)

 elif event.key == K_y:
 print “Say Yes”
 os.system(“irsend SEND_ONCE Robot KEY_R”)

 elif event.key == K_l:
 print “Say Yes”
 os.system(“irsend SEND_ONCE Robot KEY_L”)

 elif event.key == K_n:
 print “Say No”
 os.system(“irsend SEND_ONCE Robot KEY_P”)

 elif event.key == K_ESCAPE:
 terminate()

if __name__ == ‘__main__’:
 main()

Full code listing

Tips | Tricks | Hacks

Camera The camera module is the
focal point for object detection. Input
data is collated then put through a
client program running on the Pi.

Ultrasonic sensor This
senses angles and surface conditions
to determine the stopping distance
relative to an oncoming object.

Arduino This simulates the button
presses of the RC car controller. Four
pins connect to pins on the controller,
for forward, reverse, left and right.

Components list
 Raspberry Pi B+

 Arduino

 Camera module

 HC-SR04 ultrasonic sensor

 OpenCV

Right Once an
object is detected,

the ultrasonic
sensor relays this

information and
helps the RC car

come to a stop

Far right The Arduino
board simulates
button presses,

helping the RC car
drive on its own

Tips | Tricks | Hacks

132 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Self-driving
RC car

Zheng Wang turns the tables on Google with his very
own fully-functioning self-driving car
Where did the idea to develop a self-
driving car come from?
Believe it or not, I actually did this for

a school project. A lot of my interests

centre around machine learning, so I

decided to do something that heavily

involves machine learning and the

concepts that surround it. I did some

research online and found a very

inspiring self-driving car project made

by David Singleton, which showcased

what he was able to achieve with just

an Arduino board and a few other

items. I was amazed to see that the

RC car can drive itself along the track

without aid and wondered if I could

replicate a similar project.

After that, I took out my Raspberry

Pi and made up my mind to attempt

to build my own self-driving RC car

that could do even more. The aim was

to include things like front collision

avoidance, stop sign and traffi c light

detection. It took me a while to develop

the project to anything more than an

idea, just because there are so many

factors that needed to be considered.

Could you give us an overview of how
the self-driving system works?
The crux of the system consists

of three subsystems that work

seamlessly in sync together. These

systems consist of an input unit for

controlling the camera and ultrasonic

sensor, a processing unit and also the

main RC car control unit.

Firstly, live video and ultrasonic

sensor data are streamed directly from

the Raspberry Pi to the computer via

a strong Wi-Fi connection. I was quick

to recognise that it was imperative to

create as little latency as possible in

the streaming, so in order to achieve

these goals, the video resolution is

dramatically scaled down to QVGA

(320×240). It provides that smooth

streaming experience that I was

after. The next step is for the colour

images received on the computer to

be converted into greyscale and then

fed into a pertained neural network

to make predictions for the car; so

whether it should go straight ahead, or

make a left or right turn at the correct

moment. These same images are used

to calculate the stopping distance

between the car and the stop signs,

while the Raspberry Pi alerts the

system of the distance to an upcoming

obstacle. The object detection in this

project is primarily learning based.

The fi nal part of the system consists

of outputs from the artifi cial neural

network that are sent to the Arduino

via USB, which is connected directly

to the RC controller. The Arduino reads

the commands and writes out LOW

or HIGH signals, simulating button-

press actions to drive the RC car. With

so many sensors and data feeds

consistently taking place, there was a

lot of initial trial and error involved, but

it didn’t take me an overly long period

of time to get the project running

completely independently.

What sort of role did the Raspberry Pi
play in the grand scheme of things for
your self-driving car?
The main benefi t of using the

Raspberry Pi was that it’s the perfect

piece of apparatus to help collect input

data, which is a massive part of this

project. With the Raspberry Pi in place,

I connected a Pi camera module and

an ultrasonic sensor, which work in

tandem to help the Pi collate its data.

There are also two client programs

running on the Raspberry Pi that help

with the streaming side of things. One

is solely for video streaming and the

other is for the data streaming from the

ultrasonic sensor. To be honest, I didn’t

stray too far from the offi cial picamera

documentation when using it, as all

the guidelines for video streaming

are all in there. When I needed some

help with measuring distance with the

ultrasonic sensor, there were some

handy tutorials on the web for fellow

enthusiasts to follow and there’s other

reference material all over the place.

Can you tell us more about the
ultrasonic sensor? Can it detect
collisions at a full 360 degrees?
For this project, I chose to use the HC-

S404 ultrasonic sensor, as it’s one

of the most cost-effective and user-

friendly pieces of kit on the market.

It can be a bit fi ddly to set up from

scratch, but as I mentioned previously,

I was able to source help from the

internet whenever I had a problem

that I needed solving. For this sensor

in particular, the manual lists its best

detection is within 30 degrees, which

would seem about right based on the

tests that I have run with it. There are

numerous sensors on the market, so a

complete 360-degree detection seems

like something that would be plausible.

How do you see yourself taking this
project further? Perhaps you’ll want
to scale up to a bigger model?
There are a lot of areas that I’d like

to explore further to really take my

self-driving car to the next level. For

one, I’d like to eliminate the use of

the ultrasonic sensor and instead

implement a stereo camera for

measuring the distances. The results

are far more accurate than what the

ultrasonic sensor can offer. If I get into

the situation where I’ve got more spare

time on my hands, perhaps I’ll look to

add new behavioural features. It would

be intriguing to see if I can implement

things like lane changing and

overtaking into the project. Outside

of this project, I’m not working on any

other Raspberry Pi projects currently,

but I’m always on the hunt for new

inspiration – and the Pi is an amazing

piece of kit that I love to work with.

Raspberry Pi Tips, Tricks & Hacks 133

Tips | Tricks | Hacks Tips | Tricks | Hacks

Motion tracking with your Pi
This month, you will learn how to track motions with your
Raspberry Pi, a camera and some Python code

In a previous article, we looked at how
you can capture images using a camera
and a Raspberry Pi. This let you include

image capture functionality within your

own Python program, but there is so

much more you can do once you add

vision to your code. This month, we will

look at how you can add motion detection

to your Python program.

This kind of advanced image processing

is extremely difficult to do, so we will

definitely be building on the hard work of

others. Specifically, we will be using the

excellent OpenCV Python package. This

package is constantly being improved,

with more functionality being added with

every update.

The first thing you will need to do is

install the various Python packages that

you will need to talk to the camera and

use OpenCV. Installing the packages can

be done with:

 sudo apt-get install python-
picamera python-opencv

This will also install all of the required

dependencies. This project will assume

that you will use the camera module for

the Raspberry Pi. Check out the boxout

to the right for other options if you want

to try using a USB webcam. To talk to

the camera module, you need to import

the PiCamera class from the picamera

Python module. You will also need the

PiRGBArray class so that you can store

the raw data from the camera. To talk

to the camera, you instantiate a new

instance of the PiCamera class. You can

then set the resolution and frame rate

before you start capturing images.

 from picamera import PiCamera
 from picamera import PiRGBArray
 camera = PiCamera()
 camera.resolution =
tuple([640,480])

 camera.framerate = 16
 rawImage = PiRGBArray(camera,
tuple([640,480]))

You now have your camera ready, and

a memory buffer available to store the

captured images in. There are several

different methods that you can use to

do motion tracking. One of the simpler

ones is to try and notice when something

within the image field changes. There

is a Python module, called imutils, that

provides several basic image processing

functions that are useful in the pre-

processing steps. There is no package for

it within Raspbian, however, so you will

want to install it with:

 sudo pip install imutils

To look at image changes, we need to

see what the background image looks

like. You can take a series of images and

look at the average of them to get an

idea of the general background. Then, if

a new image differs from the averaged

background, we know that something has

changed. This change is most probably

due to something moving within the field

of the image. To simplify the process, we

will greyscale the image and then blur

it slightly to get rid of any high-contrast

regions. You will then want to simply run

a continuous loop, pulling an image from

the camera and running this process:

 import imutils
 import cv2
 for f in camera.capture_
continuous(rawImage, format=‘bgr’,

 use_video_port=True):
 frame = imutils.resize(f.array,
 width=500)
 gray = cv2.cvtColor(frame, cv2.
 COLOR_BGR2GRAY)
 gray = cv2.GaussianBlur(gray, (21,
 21), 0)

Here we start using the OpenCV functions

to handle the image processing steps.

You may have noticed that we are actually

working with the array representation

of the raw image data for the captured

frame. There is no meta-data wrapping

this image information, so it is your

responsibility to remember what you

are working with. The next step within

the loop is to check whether we have an

averaged image yet, and to initialise it if

we don’t. So the first time through the

loop, the following code will execute

 if avg is None:
 avg = gray.copy().astype(“float”)
 rawImage.truncate(0)
 continue

Now that we have an averaged image,

we can add every subsequent captured

image to the weighted average. We also

need to find how different the current

image is from this weighted average.

 cv2.accumulateWeighted(gray, avg,
0.5)

 imgDiff = cv2.absdiff(gray, cv2.
 convertScaleAbs(avg))

By using this weighted average, we should

be able to deal with false positive hits due

to environment changes like fluctuations

in the lighting. Now that you have what

is different from the average, what can

you do with it? How do you decide how

different it is from the average? We need

to set some threshold difference that

signifies a “real” difference in the image

from the average. If you then dilate

this thresholded image, you can apply

the findContours function to identify

the contours of the objects that are

different from the calculated averaged

background:

 imgThresh = cv2.threshold(imgDiff,
5, 255, cv2.THRESH_BINARY)[1]

 imgThresh = cv2.dilate(imgThresh,
 None, iterations=2)
 (conts, _) = cv2.findContours
 (imgThresh.copy(), cv2.RETR_
EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

This dumps all of the contours from the

current image into the list ‘conts’. You

probably aren’t very interested in tiny

objects within the list of contours. These

might simply be artifacts within the image

data. You should loop through each of

these and ignore any that are below some

area limit. You probably want to highlight

any remaining object contours by placing

a bounding box around them. Luckily,

134 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

In the main article, we have been using the Raspberry

Pi module that plugs into the IO bus of the Pi. But what

if you don’t have easy access to one of these? Almost

everyone has an old webcam sitting around the house

somewhere, and the Raspberry Pi has a perfectly

useful USB port. The image quality and frame per

second count is not as good as what you can get with

the actual Pi Module. The key is getting the image data

off the camera in the format that the OpenCV image

analysis functions is expecting. The VideoCapture()

function can not only take a video fi le name to read

in, but can also take device IDs for cameras attached

to the Raspberry Pi. Assuming that you only have one

camera attached, you can connect to it with:

 camera = cv2.VideoCapture(0)

Making sure that your USB webcam is correctly

connected and that Linux can properly talk to it is

always the place where you may run into issues. But,

if everything works the way it should, you can use all of

the ideas from the main body of the article to use it for

motion detection. While OpenCV has some capabilities

to interact with the user, you may want to use some

other framework to handle this. A good framework

that is also very fast is pygame. You can use OpenCV to

handle all of the image processing steps and build your

user interface with pygame.

The only issue is that the internal formats used by

OpenCV and pygame to store image data are different,

so you will need to do a translation back and forth.

You only really need to worry about translating from

OpenCV to pygame, since that is the direction that

information will fl ow. There are a few helper functions

that you can use to convert the OpenCV image to a

string format, and then a pygame function to import

this string into a pygame image. As an example, you

could use something like

 pygameImg = pygame.image.frombuffer(cv2Img.
tostring(), cv2Img.shape[1::-1], “RGB”)

This takes images from OpenCV (stored in cv2Img) into

a pygame format (stored in pygameImg). If you have to,

you can do a similar transformation using strings back

from pygame to OpenCV format.

What about
webcams?

OpenCV provides a function that will give

the corner coordinates and the width and

height. You can then draw a box on the

image using this information:

 for c in conts:
 if cv2.contourArea(c) < 5000:
 continue
 (x, y, w, h) = cv2.

boundingRect(c)
 cv2.rectangle(frame, (x, y),

(x+w, y+h), (0, 255, 0), 2)

You should now have an image with all

of the moving objects highlighted by red

bounding boxes. What can you do with

these annotated images, though? If you

have a graphical environment available,

you can display these results directly

on the screen. OpenCV includes several

functions to display the results of your

image analysis. The simplest is to use the

imshow(), which will pop up a window to

display the image and also add a title.

 cv2.imshow(“Motion detected”,
frame)

If you aren’t monitoring the results of your

motion detector in real time, you probably

still want to capture images when

something moves in the environment.

Luckily, OpenCV also includes a pretty

exhaustive list of IO functions. You will

probably want to timestamp these

images fi rst, though. Using the Python

module timestamp and the function

“putText()”, you can get the current time

and date and add it to the image itself with:

 import timestamp
 ts = timestamp.strftime(“%A %d
%B %Y %I:%M:%S%p”)

 cv2.putText(frame, ts, (10, frame.
shape[0] - 10), cv2.FONT_HERSHEY_
SIMPLEX, 0.35, (0, 0, 255), 1)

Now you have an image with the current

time and date on it, and the parts of the

image that show up as having movement

bounded in red boxes. You can use the

OpenCV IO functions to write out these

images so that you can check them out

later. The following code is an example:

cv2.imwrite(“filename.jpg”, frame)
The function imwrite() uses the fi le name

extension in order to fi gure out what

format to use when writing out the image.

It can handle JPEG, PNG, PBM, PGM, PPM

and TIFF. If the particular format you want

to use also takes options, you can include

them in the call to imwrite() as well. For

example, you can set the JPEG quality by

including CV_IMWRITE_JPEG_QUALITY

and then setting it to some value between

0 and 100.

Everything we have looked at has

been focused on the idea of analysing

the images in real time, and this is great if

you can put the Raspberry Pi in the same

location as the camera. If you can’t fi t it

in, though, you can still use the ideas here

to post-process the video recorded by

your micro-camera. You can use the

same OpenCV IO functions to load the

video fi le with:

 camera = cv2.
VideoCapture(“filename.avi”)

You can then run through the same

process to analyse each of the image

frames within the video fi le. The

VideoCapture() function can also read in

a series of image fi les if your camera is

simply grabbing a series of still images

rather than a video. Once your program

fi nishes, you need to remember to clean

up after yourself. You should release the

camera that you were using, and if you

had OpenCV display any images on the

desktop then you should take the time to

clean those up, too.

 camera.release()
 cv2.destroyAllWindows()

You should have enough information

now to be able to add some basic motion

detection to your own Python programs. If

you explore the OpenCV documentation,

you will fi nd many other, more complex,

image processing and analysing tools

that are available to play with. Also, more

functionality is constantly being added to

the OpenCV project.

We will be using the OpenCV
Python package, which is
constantly being improved

Raspberry Pi Tips, Tricks & Hacks 135

Tips | Tricks | Hacks

Tips | Tricks | Hacks

Combine the power and resources of your Raspberry
Pis by building a Swarm with Docker

Build a Pi cluster
with Docker Swarm

Docker is a framework and toolchain used to configure, build
and deploy containers on Linux. Containers provide a means to

package up an application and all its dependencies into a single

unit. This makes them easy to share and ship anywhere, giving a

lightweight and repeatable environment.

Each application runs in its own isolated space sharing the

host’s kernel and resources, in contrast to a virtual machine

which needs to ship with a full operating system. A Docker

container can be started or stopped within a second, and can

scale to large numbers while having minimum overhead on the

host’s resources.

The Docker community has built out a clustering solution

called Swarm which, as of version 1.0, is claimed to be

“production ready”. Our single Raspberry Pi has 1GB RAM and

four cores, but given fi ve boards we have 20 cores and 5GB RAM

available. Swarm can help us distribute our load across them.

Get ready to install Arch Linux, compile Docker 1.9.1 from

source, build some images and then start up your own swarm for

the fi rst time.

01 Install Arch Linux to an SD card
Go to Arch Linux ARM’s landing page for the Pi 2 and click

the Installation tab (bit.ly/1SyrGqU). You will need to carry out

some manual steps on a Linux computer. Follow the instructions

to fi rst download the base system tar.gz archive. Next, partition

the card and create vfat (boot) and ext4 (root) fi lesystems. Then,

expand the base system onto the card. Finally, unmount the

partitions. This will take a while as the card fi nishes syncing.

02 Confi gure the users
Once the Pi has booted up you can log in with a keyboard

as root/root and then change the password. You may also want

to remove the standard user account called “alarm” and create

your own. Here we’ve used “lud” as our account name:

 # passwd root
 # useradd lud -m -s /bin/bash -G wheel
 # passwd lud
 # userdel alarm

What you’ll need
 Github repository
github.com/alexellis/docker-arm

 Arch Linux for ARM
archlinuxarm.org

Raspberry Pi Tips, Tricks & Hacks 137

Tips | Tricks | Hacks

03 Set a static IP address
Now set a static IP address so you can easily connect

to each Pi without any guesswork. The OS uses systemd for

service confi guration. Edit the network confi guration fi le at:

/etc/systemd/network/eth0.network and then reboot:

 [Match]
 Name=eth0

 [Network]
 Address=192.168.0.200/24
 Gateway=192.168.0.1
 DNS=8.8.8.8
 IPForward=ipv4

If you would prefer to move over to a laptop or PC, you can now

connect via SSH to 192.168.0.200. In our swarm there are fi ve

nodes, so the addresses range 192.168.0.200-205.

04 Install tools and utilities
Arch Linux runs on a rolling-release model, so system

upgrades are incremental and packages are bleeding-edge. We

will use the pacman package manager to install some essentials

and upgrade the system at the same time:

 # pacman -Syu --noconfirm base-devel wget git
sudo screen bridge-utils device-mapper apache

05 Enable sudo
Confi gure your new user for sudo access by editing

the /etc/sudoers list and then removing the comment from

the line below:

 ## Same thing without a password
 # %wheel ALL=(ALL) NOPASSWD: ALL

This enables all users in the “wheel” group to use sudo. We

confi gured our user’s primary group as “wheel” in the earlier

useradd command.

06 Clone the article’s Git repository
We’ve put together a git repository containing some

essential scripts, confi guration and a pre-built version of the

Docker Swarm for ARM. Log in as your regular user account and

clone the repository from Github into your home directory:

 # cd ~
 # git clone http://github.com/alexellis/docker-arm/

07 Install Docker 1.7.1
Docker 1.9.1 exists in the Arch Linux package system

but is currently broken, so we will install the last working version

and then compile it ourselves using the offi cial build scripts:

 # sudo pacman -U ~/docker-arm/pkg/docker-1:1.7.1-2-
armv7h.pkg.tar.xz --noconfirm

 # sudo cp ~/docker-arm/pkg/docker.service /usr/
lib/systemd/system/docker.service

 # sudo systemctl enable docker
 # sudo systemctl start docker
 # sudo usermod lud -aG docker
 # sudo reboot

Now log in again and check that the installation was successful:

 # docker info

Now we will add an exclusion to /etc/pacman.conf to stop our

changes being overwritten by system updates:

 sudo ~/docker-arm/pkg/ignore_docker_package.sh

One of the attractions

of Arch Linux is that

it ships as a minimal

base system leaving

you to decide exactly

which packages you

need. The boot time

is much quicker than

Raspbian, which

has to appeal to a

wider audience. The

system runs a rolling

release through the

pacman tool, keeping

all your packages

up to date with

the development

community. However,

be aware that the

release model

updates mean that

you can only install

the latest version of

a package.

Arch Linux
ARM

Arch Linux runs on a rolling-release
model, which means system upgrades
are incremental and packages are
bleeding edge

Left Arch Linux is
an excellent choice
for projects that
need a lightweight,
bleeding-edge
software base

138 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Here we have

focused on

distributing a web

application across

a cluster, but the Pi

is also perfect for

including hardware

and sensing at scale.

The Pi has 4 USB

ports, 42 GPiO pins,

audio output and a

camera interface.

You have all the

raw materials to do

something really

unique. Could

you extend the

expressredis4.x

image to light up an

LED when it is busy

processing a

request, perhaps?

Raw
materials

Right Docker has
fast become the

industry standard
for container tech

08 Build Docker on Docker!
Now we have the working version, we need to compile it:

 # cd ~/docker-arm/images/docker-arm
 # ./build.sh

For the next 30-60 minutes a Docker development image will

be set up for us, the code will be built and patched for ARM,

and will then be copied into a local folder on our Pi. When the

script fi nishes running you should get a message as below:

 Created binary: bundles/1.9.1/binary/docker-1.9.1

If the output is successful then go ahead and install the changes:

 # cd ~/docker-arm/images/docker-arm
 # sudo ./install.sh
 # sudo systemctl start docker

09 Build Docker Swarm image
There is an offi cial Swarm image available in the public

registry, but we cannot use this because it was built for x86_64

architecture – i.e. a regular PC. So let’s build our own image:

 # cd ~/docker-arm/images/swarm-arm
 # ./build.sh
 # docker run alexellis2/swarm-arm --version

10 Additional nodes
At this point you can either duplicate the SD card or run

through the instructions again on each Pi. With either method,

/etc/hostname and the IP address need to be updated on all

Pis. If duplicating cards then make sure you delete /etc/docker

/key.json to avoid clashes in the swarm. There are a number

of additional images in the repository – you can build them as

you need them as you need them or use the build_all.sh script

(recommended). This could take a while to run.

11 Start the primary node
We are going to dedicate the fi rst node over to managing

the swarm on port 4000 and handling service discovery through

Consul on port 8500. Both services will be running on the local

Docker instance.

 # cd ~/docker-arm/images/consul-arm
 # ./build.sh

 # ~/docker-arm/script/start_consul.sh
 # ~/docker-arm/script/manage_swarm.sh

If you built the consul-arm container earlier, you will see that it

is much quicker this time around because Docker caches the

steps, so only what changes between builds needs to be re-built.

Raspberry Pi Tips, Tricks & Hacks 139

Tips | Tricks | Hacks

Docker Compose

is a tool that reads

a YML fi le and links

together containers

transparently,

enabling you to bring

up a web service

spanning more

than one container

and saving many

keystrokes.

nodejs_1:
 image: node-
counter
 ports:
 - “3000”
 links:
 - redis_1
redis_1:
 image: redis
 ports:
 - “6379”
nginx_1:
 image: nginx
 links:
 - nodejs_1
 ports:
 - “80:80”

Docker
Compose

12 Join the swarm
Connect to one of the nodes, i.e. 192.168.0.201, and start

the auto_join_swarm.sh script. This will query the IP address of

eth0 and then advertise that to consul and the swarm manager.

 # ~/docker-arm/script/auto_join_swarm.sh

You will now see the swarm agent running under docker ps. Type

in docker logs join if you want to see its output. Repeat this step

on each of the remaining nodes.

13 Query the swarm
Log into the primary node and run the swarm-arm image

passing in the address of the consul service:

 # docker run alexellis2/swarm-arm list
consul://192.168.0.200:8500/swarm

 192.168.0.201:2375
 192.168.0.202:2375
 192.168.0.203:2375
 192.168.0.204:2375
 192.168.0.210:2375

To start using the docker command with the swarm itself set

the DOCKER_HOST environmental variable to the address of the

swarm manager:

 # export DOCKER_HOST=tcp://192.168.0.200:4000

Now fi nd out how many pooled resources we have:

 # docker info
 ...
 Nodes: 4
 ...
 CPUs: 20
 Total Memory: 3.785 GiB

14 Example: distributed web application
Let’s now set up a distributed web application that

increments a hit-counter in a Redis database every time we hit

it. We will run several instances of this and use an Nginx load

balance in front of them. We can also use Apache Bench to get

some metrics.

These containers need to be started in the correct order,

starting with Redis, then Node and fi nally Nginx.

15 Start the redis and node containers
First start all the Redis containers, giving them names

from redis_1 to redis_5:

 # docker run -p 6379:6379 -d --name redis_1
alexellis2/redis-arm

Now start an equal number of node.js containers linking them to

the redis containers.

 # docker run -p 3000:3000 -d \
 --label=’node_redis’ \
 --link redis_1:redis \
 expressredis4.x

Finally run the load balancer on the primary node:

 # DOCKER_HOST=”” docker run -d --name=balancer
-p 80:80 nginx_dynamic

16 Run Apache Bench
We’ll start Apache Bench with 10 concurrent threads and

1000 requests in total. We started our application on six swarm

agents after setting up two additional Pis.

 # ab -n 1000 -c 10 http://192.168.0.200/
 ...
 Concurrency Level: 10
 Time taken for tests: 2.593 seconds
 Requests per second: 385.65 [#/sec] (mean)
 ...

Repeating the experiment with a single Pi gave only 88.06

requests per second and took 11.356 seconds in total. You could

also try increasing the concurrency (-c) value to 100.

17 Direct the swarm from your PC
If you pull down the binary of the Docker client on its own,

you can then use the DOCKER_HOST variable to point at your

swarm manager, saving you from having to log into the Pis with

SSH. Docker client binary releases can be found at https://docs.

docker.com/engine/installation/binaries.

 # wget https://get.docker.com/builds/Darwin/x86_64/
docker-1.9.1

 # chmod +x docker-1.9.1
 # export DOCKER_HOST=tcp://192.168.0.200:4000
 # ./docker-1.9.1 info

18 Wrapping up
You can repeat the steps in the tutorial until you have

enough swarm agents in your cluster. One of the benefi ts of

clustering is the distribution of work across nodes, but Swarm

also provides us with linking to handle coordination between

nodes. To take this idea further in your own Raspberry Pi

creations, why not connect some sensors through the GPiO pins

and take advantage of the Pi’s hardware capabilities?

140 Raspberry Pi Tips, Tricks & Hacks

Remake a classic game in FUZE BASIC and delve into
the world of programming
Welcome to our latest FUZE BASIC tutorial. If you haven’t

already gotten hold of this programming language, FUZE BASIC

can be downloaded for free for both Linux and Raspberry Pi

users from fuze.co.uk/getfuzebasic.

So why should you bother to learn BASIC? Well, BASIC

(Beginner’s All-purpose Symbolic Instruction Code) was

instrumental in starting the computing revolution back in the

Seventies and Eighties. Thirty years on and BASIC, or in this

case FUZE BASIC, presents a modernised version of the original

classic. Now with updated commands for advanced sprite and

media handling, the removal of goto and gosub commands as

well as line numbers, and the fact that on modern hardware it

races along, it still remains one of the easiest introductions for

users wanting to jump into the world of programming.

To prove just how straightforward it is to use, in this tutorial

we’re going to be looking at programming a classic arcade game.

Then, over the next two issues we’ll take you from this basic

graphics engine to introduce enemies, fi ring and collisions, and

then fi nally refi nements such as an intro screen and hi-score

tables, plus some tidy-ups and optimisations.

Our game, ‘73MP357’, is a remake of a true classic – Dave

Theurer’s Tempest by Atari way back in 1981. We also couldn’t

resist paying tribute to the incredible remake by Jeff Minter for

the Atari Jaguar.

Code a Tempest clone
in FUZE BASIC Part 1

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 141

Tips | Tricks | Hacks

What you’ll need
 FUZE BASIC V3
fuze.co.uk/getfuzebasic

 73MP357PART1.fuze

01 Get the program listing
As this is a fairly large program, we won’t be typing it

line by line. Instead, you need to download the Part 1 code from

FileSilo.co.uk or fuze.co.uk/tutorials/73MP357PART1.fuze.

We will then look at each section and explain what is happening.

Open FUZE BASIC and either load (with F8) ‘73MP357’ or

copy and paste the code straight into the editor (F2 switches

between the editor and immediate mode).

02 Try the code
Before we take a look at the code, let’s see what it does.

Run the program by pressing F3 or typing run in immediate

mode. You’ll be presented with three core events: the star fi eld,

the level and, of course, the player. You can move the player

around the level using left and right cursors.

Notice the playing fi eld view perspective changes as you

rotate around. This particular effect is from Tempest 2000 and

not the arcade original.

Right, now to the code. Press Escape to stop the program

and then F2 to bring up the editor.

03 System set up
You’ll see that the code is well commented, with each

section headlined with a single # and comment.

Our fi rst section sets up our system and variables. We set

the resolution and updatemode is set to zero so that nothing

updates the screen other than an update command. In FUZE

BASIC, if the mode is set to 1 or 2 then print statements will also

update the screen, which slows everything down.

Three variable arrays are set up to store the star angle, speed

and distance. These could be combined into one array but it is

easier to read when separated.

The while loop fi lls the star fi eld arrays with randomly

positioned points with random angles and speeds.

04 See to the display
Next up are the variables required for the playing fi eld

level display. The radius and radius2 variables defi ne the outer

and inner rings, and vertices sets up the number of sections

our level is divided into. The minimum is four for a square, with

a maximum of up to 13. The gap variable determines the step

distance around the circumference so the player will always be

positioned in the middle of each section.

settings
xres = 840
yres = 640
updatemode = 0
setmode(xres, yres)

variables for the star field effect
dim stars(1000)
dim starsSpeed(1000)
dim starsDist(1000)
starNum = 0

setup star field effect
while starNum < 1000 cycle
 stars(starNum) = rnd(360)
 starsSpeed(starNum) = rnd(5) + 1
 starsDist(starNum) = rnd(gheight)
 starNum = starNum + 1
repeat

level drawing variables
x = 0
y = 0
x2 = 0
y2 = 0
oldX = 0
oldY = 0
oldX2 = 0
oldY2 = 0
angle = 0
radius = gheight / 2 - 50 // outer radius
radius2 = gheight / 16 // inner radius
vertices = rnd(9) + 4 // nothing less than a square
gap = 360 / vertices // angle between vertices

player variables
pAngle = gap / 2
pX = 0
pY = 0
pTurn = 0

different centers for the parallax effect
centerX = gwidth / 2 // center of close objects
centerY = gheight / 2
centerX2 = centerX // center of far objects
centerY2 = centerY
starsCenterX = centerX // fixed center for the stars
starsCenterY = centerY

movement variables
moveDelay = int(80 / vertices) // delay after moving
moveCount = 0

loop
 cls2

 # movement input
 if scankeyboard(scanright) then
 if moveCount = 0 then
 pAngle = pAngle + gap
 moveCount = moveDelay
 if pAngle > 360 then
 pAngle = gap / 2
 endif
 endif

Full code listing
Step 03

Step 04

Step 05

Step 06

Full codeFileSilo.co.uk/bks-B38

142 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

05 Player variables
A few player variables are required to determine the

location on-screen and its position in relation to the level.

Three centre X and Y coordinates are used: two moving

ones for the level and a fixed one for the star field. The moving

centres will make sense a bit further on, but it is thanks to

these that we have the slick perspective effects.

A moveDelay variable (80 divided by the number of sections,

ie vertices) is used to keep player movement consistent

regardless of how many sections there are in the level.

06 Remove flicker
Now we move onto the main loop. The cls2 statement

is critical and is very different to the more standard cls version:

cls2 wipes out the frame buffer memory; this is a separate

screen memory where everything is drawn first. When you

issue an update statement, the frame buffer is copied to the

main screen memory. The cls version just clears everything, so

it creates a lot of flicker. Both cls2 and update ensure flicker-

free updates, which is essential for games.

The player keyboard controls are checked next. If the right

cursor is pressed then the player angle is increased by the gap

amount (this is the distance to the centre of the next section).

The left cursor, of course, does the opposite.

07 Position the stars
Then we calculate the star positions – that is each and

every one of them! The number of stars is adjusted depending

on the display resolution.

White is selected and a loop to count through the stars is

initiated. Each star is a position on the circumference of a

circle. The radius of the circle therefore determines the star’s

distance from the centre. We take the distance from the

centre, starsDist(starNum), and multiply it by the cosine of the

angle, stars(starNum). We then add this to the centre position,

starsCenterX, to give the new starX position. The starY position

is the same but uses the sine instead.

08 Check the star movement
We check to see if a star has left the display area and

if so, reset it back to the centre plus a small offset, as we don’t

them to all appear from the dead centre.

Finally, the star is drawn using plot(starX, starY) and the

while loop is repeated until all of the stars have been updated

and plotted on the star field.

09 Make the level
On to the level itself. Each segment is drawn one at

a time. The first line of the first segment has inner and outer

X and Y coordinates. The next line along (again, from centre to

outer rim) is calculated and the two connecting lines are drawn

from the old positions to the new ones.

 endif

 if scankeyboard(scanleft) then
 if moveCount = 0 then
 pAngle = pAngle - gap
 moveCount = moveDelay
 if pAngle < 0 then
 pAngle = 360 - (gap / 2)
 endif
 endif
 endif

 # set max particle effects based on resolution
 maxStars = gheight / 5

 colour = white
 while starNum < maxStars cycle

 # calculate star positions using expanding or
 # contracting circles
 starX = starsDist(starNum) * cos(stars(starNum))
 starX = starsCenterX + starX
 starY = starsDist(starNum) * sin(stars(starNum))
 starY = starsCenterY + starY
 starsDist(starNum) = starsDist(starNum) + starsSpeed(starNum)

 # reset position if offscreen
 if starX < 0 then
 starsDist(starNum) = rnd(15) + 5
 endif
 if starX > gwidth then
 starsDist(starNum) = rnd(15) + 5
 endif
 if starY < 0 then
 starsDist(starNum) = rnd(15) + 5
 endif
 if starY > gheight then
 starsDist(starNum) = rnd(15) + 5
 endif

 plot(starX, starY)
 starNum = starNum + 1
 repeat
 starNum = 0

 # Draw the level by looping & drawing a segment at a time.
 colour = blue
 while angle < 360 cycle
 x = radius * cos(angle)
 x = centerX + x
 y = radius * sin(angle)
 y = centerY + y
 x2 = radius2 * cos(angle)
 x2 = centerX2 + x2
 y2 = radius2 * sin(angle)
 y2 = centerY2 + y2
 line(x, y, x2, y2)
 line(x, y, oldX, oldY)
 line(x2, y2, oldX2, oldY2)
 oldX = x
 oldY = y
 oldX2 = x2
 oldY2 = y2
 angle = angle + gap
 repeat

Full code listing
Step 06

Step 07

Step 08

Step 09

Raspberry Pi Tips, Tricks & Hacks 143

Tips | Tricks | Hacks

The number of stars is adjusted
depending on the display resolution

10 Place the player
Time to work out where we’re drawing the player and

adjust the viewpoint. The player position is calculated twice

in different positions and averaged to match the polygon and

parallax effects. The position of a point on a circle is calculated:

 x = cos(angle) * radius
 y = sin(angle) * radius

Sin and cos have a centre at zero so we need to add the

screen centre point to the player’s X and Y. The player centre is

calculated from the radius multiplied by the cosine of the player

angle plus the screen centre.

11 Fix a speed
The moveCount and moveDelay variables are used to

fi x the player’s movement speed around the level regardless of

how many sections there are.

The next section checks to see which quarter of the screen

the player is in and moves the centre accordingly. The playing

fi eld is moved by a few pixels each frame until limited by:

 if centerX < (gwidth / 2) + (gwidth / 20)

Finally, the player’s position is calculated and drawn using the

polyplot command. The angle is fi xed so the player faces the

centre and the size is scaled against the display resolution.

12 Build a polygon
The polystart command allows a polygon to be built up

from a series of lines and is automatically fi lled in.

Rather than work out the heavy sums within every plot in the

polystart statement, we have calculated them beforehand with

c = cos(pAngle + 90) and s = sin(pAngle + 90) and u is the

scale of the ship against the display resolution.

13 Polygon equation
Each X point on the polygon is based on scale * line

length) multiplied by cos(playerAngle + 90), minus (scale *

line length) multiplied by sin(playerAngle + 90), plus playerX.

For the Y coordinate, it’s (scale * line length) multiplied by sin(

playerAngle + 90) plus (scale * line length) multiplied by COS(

playerAngle + 90) plus playerY.

14 Experiment with variables
The update statement at the very end copies the

temporary frame buffer to the screen display… and voila!

There are plenty of variables to experiment with so feel

free to change numbers and see what happens. Doing so will

provide a great insight into what is going on.

Next month we will add enemies, fi ring and maybe a few

sound effects, too. The Particle Laser is brilliant!

 # Calculate player position
 pX = (((radius * cos(pAngle - (gap / 2))) + centerX) +
((radius * cos(pAngle + (gap / 2))) + centerX)) / 2
 pY = (((radius * sin(pAngle - (gap / 2))) + centerY) +
((radius * sin(pAngle + (gap / 2))) + centerY)) / 2
 angle = 0

 if moveCount > 0 then
 moveCount = moveCount - 1
 endif

 # move the center of closer objects more
 if pX + 2 < gwidth / 2 then // check the players position
 if centerX < (gwidth / 2) + (gwidth / 20) then
 centerX = centerX + 4
 centerX2 = centerX2 + 2
 endif
 endif

 if pX - 2 > gwidth / 2 then
 if centerX > (gwidth / 2) - (gwidth / 20) then
 centerX = centerX - 4
 centerX2 = centerX2 - 2
 endif
 endif

 if pY + 2 < gheight / 2 then
 if centerY < (gheight / 2) + (gheight / 20) then
 centerY = centerY + 4
 centerY2 = centerY2 + 2
 endif
 endif

 if pY - 2 > gheight / 2 then
 if centerY > (gheight / 2) - (gheight / 20) then
 centerY = centerY - 4
 centerY2 = centerY2 - 2
 endif
 endif

 colour = yellow
 c = cos(pAngle + 90) // correct the view angle by 90 degrees
 s = sin(pAngle + 90)
 u = gheight / 80 // scale the player ship to the resolution

 # rotate & scale coordinates; draw player ship
 polystart
 polyplot((u*5 * c) - (u*5 * s) + pX, (u*5 * s) + (u*5 * c) + pY)
 polyplot((u*5 * c) + pX, (u*5 * s) + pY)
 polyplot(0 - (u*-2 * s) + pX, (u*-2 * c) + pY)
 polyplot((u*-5 * c) + pX, (u*-5 * s) + pY)
 polyplot((u*-5 * c) - (u*5 * s) + pX, (u*-5 * s) + (u*5 * c) + pY)
 polyplot((u*-7 * c) + pX, (u*-7 * s) + pY)
 polyplot(0 - (u*-4 * s) + pX, (u*-4 * c) + pY)
 polyplot((u*7 * c) + pX, (u*7 * s) + pY)
 polyend
 update
repeat
end

Full code listing
Step 10

Step 12

Step 13

Step 11

144 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Remake a classic game in FUZE BASIC and delve into
the world of programming

Code a Tempest clone
in FUZE BASIC Part 2

What you’ll need
 FUZE BASIC V3
fuze.co.uk/getfuzebasic

 73MP357PART2.fuze

Welcome to part two of our FUZE BASIC
tutorial. You will need to FUZE BASIC

installed for this, and it can be downloaded

for free for Linux and Raspberry Pi users

from www.fuze.co.uk/getfuzebasic.

Don’t worry; it’s possible to skip part one

and just jump straight in here. However,

because this is a fairly large program, you

won’t be typing in off the page. Instead you

will need to download the program listing

from FileSilo or here: www.fuze.co.uk/

tutorials/73MP357PART2.fuze.

73MP357 is coded by Luke Mulcahy,

FUZE’s resident coder and, in the nicest

way possible, our very own human

supercomputer. This issue he tasks his

brain with developing the basic game

structure further, adding all sorts of

awesome trinkets to delight. These include

simple scoring, power-ups, enemies and

the all-important fire power. Gameplay is

also improved with smooth movement. In

short, all you need for a rudimental – but

definitely playable – game.

Full code
FileSilo.co.uk/bks-B38

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 145

Tips | Tricks | Hacks

01 Grab the Part 2 code
Start FUZE BASIC and either load (with F8)

73MP357PART2.fuze or copy and paste the code straight into

the editor (F2 switches between the editor and immediate

mode). If you followed the fi rst part last month then you’ll be

pleased to see things are coming along nicely. Run the program

by pressing F3 or typing RUN in immediate mode.

02 Test it out
The fi rst thing you’ll notice is that we now have a score

displayed. Tap the space bar and move left and right. We have

fi re power; hold on for a second longer and we should also have

enemies and the all-important ‘Power Up’, which in this case

awards us with a Particle Laser. We also have basic collision so

enemies can be shot, but more importantly, if one touches you

then you die too! Have a play then bring up the editor; press Esc

to stop the program then F2. We’ll be brief on the sections we

covered last month and offer more detail on the new additions.

03 Set up environment (lines 001 - 027)

Our initial section sets up a few environment

variables. There are a number of variables used for screen

resolution and frames per second (targetfps, minfps and

maxfps). Luke has built in a very cool dynamic resolution

feature that automatically adjusts the screen resolution

to maintain a smooth frame rate. At the start of each game

you can see the screen size adjust until it fi nds its optimum

resolution to frame rate ratio. Once it reaches 60fps, a time

delay is used to keep it there. We’ll come back to this later but

throughout the code you will fi nd functions using the frame

rate to ensure everything happens in sync. The remaining

variables are straightforward.

04 Set up star fi eld (lines 028 - 042)

The star fi eld was covered last month but in brief this

creates three variable arrays to store the positions, speed

and angles of up to 1,000 stars. The arrays are populated with

random initial settings.

05 Laser variables (lines 043 - 058)

The good stuff. Again a few arrays are set up to store

the positional and movement information for each of the active

lasers. Notice also laserReload = INT (targetfps / 2) on line 53,

the fi rst use of a frame synced action. In this case there is a

counter so that the lasers can’t fi re too quickly but regardless of

the frame rate, they will reload at the same frequency.

09 Release the power-up (lines 138 - 156)

We begin the game armed with a single-shot laser.

We only release the power-up canister if we haven’t already

powered-up. This function is checked with IF particleLaser =

FALSE THEN, after which a new one is released and all of its

variables initialised.

keys) to move the player left and right, and then either the

space bar or return key for fi ring. The fi re button routine is fairly

complex as we have to check to see if we have a laser available

because we are restricted by maxLasers. We then check to see

if they have reached the centre (radius2). If we have particle

lasers enabled, we swap sides as each one is added so we have

the dual barrel machine gun effect (very nice indeed):

 // Check if Right cursor or the D key is pressed
 IF scanKeyboard (scanRight) OR scanKeyboard
(scanD) THEN

 IF moveCount = 0 THEN
 oldPlayerAngle = playerAngle
 playerAngle = playerAngle + gap
 moveCount = moveDelay
 IF playerAngle > 360 THEN
 playerAngle = gap / 2
 ENDIF
 ENDIF
 ENDIF
 // Check if Left cursor or the A key is pressed
 IF scanKeyboard (scanLeft) OR scanKeyboard
(scanA) THEN

 IF moveCount = 0 THEN
 oldPlayerAngle = playerAngle
 playerAngle = playerAngle - gap
 moveCount = moveDelay
 IF playerAngle < 0 THEN
 playerAngle = 360 - (gap / 2)
 ENDIF
 ENDIF
 ENDIF
 // Check if the Space bar or Return key is pressed
 IF scanKeyboard (scanSpace) OR scanKeyboard
(scanReturn) THEN

 IF laserCount = 0 THEN
 IF numLasers < maxLasers THEN
 FOR i = 0 TO maxLasers CYCLE
 IF laserDist(i) = radius2 THEN
 laserDist(i) = SQRT (((centerX -
playerX) * (centerX - playerX)) + ((centerY -
playerY) * (centerY - playerY)))

 laserAngle(i) = playerAngle
 laserSide(i) = particleLaserSide
 IF particleLaserSide = 0 THEN
 particleLaserSide = 1
 ELSE
 particleLaserSide = 0
 ENDIF
 numLasers = numLasers + 1
 laserCount = laserReload
 BREAK
 ENDIF
 REPEAT
 ENDIF
 ENDIF
 ENDIF

06 Enemy variables (lines 056 - 069)

There’s just no point in having great fi repower if we

can’t use it to exterminate a relentless supply of alien monsters

hell-bent on taking over the Earth. You should be noticing

something of a pattern by now. Again a few arrays are used

to store enemy angles, distance (from the centre) and speed

(enemyMove), however an additional variable (enemyHealth)

has been added so that we can have different results from

different weaponry.

07 Player and power-ups (lines 070 - 086)

Here we handle variables like the player angle, set

score fl ags and defi ne the power-up colour, fade and angle.

08 Main loop (lines 087 - 137)

This is where the meat is. To start with we’re checking

for key presses. We have it set to A and D (or the left and right

146 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

11 Get the power-up (lines 161 - 174)

Then if so, is it in the same place as the player

(playerAngle - gap / 2)? If it is then “Particle Laser!” is displayed

and particleLaser =TRUE.

12 Adjust shot speed (lines 175 - 184)

This determines shot release frequency. Particle

release (laserCount / 1.5) is significantly quicker than standard

shot release (laserCount / 1.05).

13 Top-up enemies (lines 185 - 207)

If we have fewer than the maximum number of enemies

on-screen (maxEnemies) and we are within the enemyCount

boundaries, then this if statement will introduce a new enemy.

 // Check for enemies being present
 IF tempTime > 3000 THEN
 IF enemies = TRUE THEN
 IF enemyCount > 0 THEN
 enemyCount = enemyCount - 1
 ELSE
 IF enemyCount = 0 THEN
 IF numEnemies < maxEnemies THEN
 FOR i = 0 TO maxEnemies CYCLE
 IF enemyDist(i) = radius THEN
 enemyDist(i) = radius2
 enemyAngle(i) = (RND (vertices -
1) * gap) + (gap / 2)

 enemyHealth(i) = 100
 numEnemies = numEnemies + 1
 enemyCount = enemyDelay
 BREAK
 ENDIF
 REPEAT
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF

14 Plot the stars (lines 208 - 231)

The star field routine runs through the maxStars

variable, increasing the distance from the centre (starsDist)

until it travels completely off the screen. At that point they’re

reset back to the middle with a random factor so they don’t all

appear dead in the centre. They are drawn with a simple PLOT

(starX, starY) command.

 // Routine to plot the stars
 COLOUR = White
 WHILE starNum < maxStars CYCLE
 starX = starsDist(starNum) * COS (stars(starNum))
 starX = starsCenterX + starX
 starY = starsDist(starNum) * SIN (stars(starNum))
 starY = starsCenterY + starY
 starsDist(starNum) = starsDist(starNum) +
starsSpeed(starNum)

 IF starX < 0 THEN
 starsDist(starNum) = RND (15) + 5

15 Draw playing field (lines 232 - 251)

We explained this concept in detail last month and

very little has changed. Basically, the playing field is drawn in

segments around the circumference of a circle using just three

LINE statements.

 // Draw the playing field
 COLOUR = Blue
 WHILE angle < 360 CYCLE
 x = radius * COS (angle)
 x = centerX + x
 y = radius * SIN (angle)
 y = centerY + y
 x2 = radius2 * COS (angle)
 x2 = centerX2 + x2
 y2 = radius2 * SIN (angle)
 y2 = centerY2 + y2
 LINE (x, y, x2, y2)
 LINE (x, y, oldX, oldY)
 LINE (x2, y2, oldX2, oldY2)
 oldX = x
 oldY = y
 oldX2 = x2
 oldY2 = y2
 angle = angle + gap
 REPEAT

16 Calculate and draw player (lines 252 - 267)

The player position is becoming more complex. The first

stage introduces a new function: DEF FN lerp(a,b,c). This is

going to be used a lot from now on, so:

 DEF FN lerp(a, b, c)
 result = a + c * (b - a)
 = result

This takes two numbers, A and B, and interpolates between

them so that C can be used as a distance or angle, or even a

colour step. This enables us to work out a step in between two

points on the screen and calculate an equal step between.

This is then used to ensure smooth movement is made for

any object anywhere on the screen, regardless of its size or

location. Very clever indeed!

 // Calculate the player position
 IF playerAngle - oldPlayerAngle < ((0 - 360) +
gap) + 1 THEN

 tmpPlayerAngle = FN lerp(playerAngle + 360,
oldPlayerAngle, moveCount / moveDelay)

10 Move the power-up (lines 157 - 160)

Next it is moved outward towards the player with

powerupDist = powerupDist + (radius / 80) and then checked

to see if it has arrived at the outer edge (radius).

 ENDIF
 IF starX > gWidth THEN
 starsDist(starNum) = RND (15) + 5
 ENDIF
 IF starY < 0 THEN
 starsDist(starNum) = RND (15) + 5
 ENDIF
 IF starY > gHeight THEN
 starsDist(starNum) = RND (15) + 5
 ENDIF
 PLOT (starX, starY)
 starNum = starNum + 1
 REPEAT
 starNum = 0

Raspberry Pi Tips, Tricks & Hacks 147

Tips | Tricks | Hacks

17 Change perspective (lines 268 - 292)

Again covered in detail last month, this section shifts

the playing fi eld perspective depending on which corner of the

screen the player is positioned.

18 Calculate and draw power-up (lines 293 - 312)

The IF powerupDist < radius THEN line makes sure

the power-up exists as it has not yet reached the outer radius.

Notice the use of the FN lerp function again, but this time to

calculate the smooth gradient between two colours. See,

we told you this would be a useful thing to learn to do! The

colour evenly fades between random cycles. The power-up’s

distance from the centre is updated and is then drawn using

a simple CIRCLE statement: CIRCLE (powerupX, powerupY,

u, TRUE).

19 Calculate and draw lasers (lines 313 - 354)

While the actual movement of the lasers remains

the same – apart from speed, that is – we need to calculate

the laser positions depending on whether we are in single

shot or particle mode. If in particle mode then both sides

need to be calculated. Finally, the lasers are drawn with a

polyPlot function.

20 Check for laser hits (lines 355 - 389)

Each laser is checked to see if it enters the same

airspace as an enemy and if so, the enemy is dealt with

accordingly. At this stage all lasers have the same power so

a single hit reduces their health by 100. Next month we’ll be

taking you through how to update this so that if an enemy is

hit, it will be removed and the player’s score will then increase

by 10. Once a laser reaches the inner circle (radius2) then it

is removed from the playing fi eld.

21 Calculate and draw enemies (lines 390 - 415)

You should be getting familiar with the process now:

cycle through the number of items, in this case enemies

(maxEnemies), check to see if they’ve reached the outer rim,

and if not then use FN lerp to calculate a smooth movement

step and apply it. EnemyDist is the distance from the inner

circle (radius2) and enemyAngle is the direction it is heading.

We use COS and SINE to work out the position and then a

ployPlot function to draw the enemy.

22 Check for enemy hits (lines 416 - 442)

Next we test the enemy position against the player

position and if they are the same, “Game Over” is displayed and

the game ends… for now. Finally, we check the current angle of

the enemy and make sure it is heading towards the player. Also

the angle is tested and reset if it goes around the clock.

23 Calculate and draw player (lines 443 - 457)

This is rather simple now that everything else has been

done. COS and SINE with U (the outer distance) again are used

to determine the new angle and we fi nish off with a sequence of

polyPlot commands to draw the player.

24 Display messages (lines 458 - 478)

The next block displays the score and any messages

that might be in play, like “Particle Laser!” (more next month).

25 Check frame rate & recalibrate (lines 479 - 584)

This next section is huge but actually very

straightforward. First off, check to see if we are below minfps

and if so, recalibrate everything accordingly. All the key

measures are reset for the new resolution so the inner and

outer radii are scaled to match the new size and so on.

The opposite happens if we are over maxfps, in that the

resolution increases – if we go over maxxres then we keep

it there, in this case the maximum resolution was set at the

beginning at 1920 x 1080.

26 Main positional variables (lines 585 - 663)

Another long chunk but again very simple. This last

but one block initialises the positions and values at the start

of each game – this will become more important when we

introduce level progression. The fi nal block is the DEF FN

lerp(a,b,c) function that we referred to earlier.

27 TBC…
And that’s it for now! At this stage you have the

basic shell of the game. Next month we will tidy everything

up, introduce progressive scoring and levels, add awesome

sounds, develop the diffi culty settings, include a start-up

screen and any other fi nishing touches. See you next month!

To fi nd out more about FUZE BASIC and the FUZE in general,

please visit www.fuze.co.uk

 ELSE
 IF playerAngle - oldPlayerAngle > (360 - gap)
- 1 THEN

 tmpPlayerAngle = FN lerp(playerAngle,
oldPlayerAngle + 360, moveCount / moveDelay)

 ELSE
 tmpPlayerAngle = FN lerp(playerAngle,
oldPlayerAngle, moveCount / moveDelay)

 ENDIF
 ENDIF
 playerX = (((radius * COS (tmpPlayerAngle - (gap
/ 2))) + centerX) + ((radius * COS (tmpPlayerAngle
+ (gap / 2))) + centerX)) / 2

 playerY = (((radius * SIN (tmpPlayerAngle - (gap
/ 2))) + centerY) + ((radius * SIN (tmpPlayerAngle
+ (gap / 2))) + centerY)) / 2

 angle = 0
 IF moveCount > 0 THEN
 moveCount = moveCount - 1
 ENDIF

148 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Code a Tempest clone
in FUZE BASIC Part 3

What you’ll need
 FUZE BASIC V3
fuze.co.uk/getfuzebasic

 73MP357PART3.fuze

Add the fi nishing touches to your
FUZE BASIC arcade game
Welcome to the fi nal episode of our FUZE

BASIC tutorial. Over the last two parts

we’ve built up a retro tunnel shooter game

inspired by the classic Tempest. This

month, we’re going to add in the last few

features and tighten up our code to make

this into a fully functional game.

At almost 900 lines, 73MP357 is now

a fairly signifi cant program. You will need

to download the full program as well as

a few sound effect and music fi les, all of

which are available to download from this

issue’s FileSilo page or from fuze.co.uk/

tutorials/73MP357.zip.

Download and decompress the fi les,

then save the resulting folder to your

FUZE BASIC folder. This fi nal version is

exactly that: the fi nished article. We now

have levels, enemies, explosions, music

and sound effects, scoring, collision and

an attract screen. One more thing: FUZE

BASIC has been updated somewhat since

the last tutorial and as such we highly

recommend you update it.

Full code
FileSilo.co.uk/bks-B38

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 149

Tips | Tricks | Hacks

01 Main loop (lines 001 - 034)

Start FUZE BASIC and either load (with F8) 73MP357.

fuze or copy and paste the code straight into the editor (F2

switches between the editor and immediate mode).

The fi rst thing you might notice is that we have tidied things

up signifi cantly compared to the previous versions. As much

as possible, we have compartmentalised each section so it

is easier to follow and debug. It is also far easier to add new

things. The main program now looks like this:

 // 73MP357 by Luke Mulcahy - FUZE Technologies Ltd
 PROC initialise
 PROC attract
 CYCLE // start of the main loop
 frameStart = TIME // makes a note of the time so
we can see how long a single frame takes

 CLS2
 IF speedCount > speedCounterMax THEN // only do
anything once a certain time has passed

 speedCount = 0
 PROC keys
 PROC updatePowerUp
 PROC warp
 PROC lasers
 PROC enemies
 PROC updateStars
 PROC updatePlayer
 PROC drawPlayingfield
 PROC updatePerspective
 IF warp = FALSE THEN // we don’t update some
things when the warp effect is active

 PROC drawPowerUp
 PROC drawlasers
 PROC drawEnemies
 ENDIF
 IF destroyed = FALSE THEN PROC drawPlayer
 PROC checkProgress
 PROC updateDebris
 PROC updateGameInfo
 UPDATE // update and display the screen
 PROC speedLimit
 ENDIF
 speedCount = speedCount + 1
 REPEAT // the end of the main loop
 END

02 Procedural languages
Rather than go through the entire program line by line,

we’ll take on each individual procedure individually and explain

what is going on.

Firstly, though, FUZE BASIC is a procedural language, not an

object-orientated one. This means we include everything we

require in the one program rather than referencing ‘classes’ or

libraries of external functions.

While most modern languages are based around object

programming techniques, the original procedural-based style

is very easy to follow and understand for most people, but on

the downside it means we generally have to write everything in

the one program which can turn it into quite a beast, so make

sure to keep your work neat and organised.

Procedures therefore allow us to break the program up into

sections similar in some ways to objects but, most importantly,

into smaller and far neater segments of code that are much

easier to debug. So, to the fi rst PROCedure then!

03 Initialise game variables (lines 747 - 851)

The DEF PROC initialise section initialises the game

environment variables and loads the logo sprite, sound effects

and music fi les. You will see quite a few DIM statements

initialising variable arrays; DIM stands for Dimension. We

declare an array variable and specify its dimensions. Then

rather than using simple cellOne=1, cellTwo=5, cellThree=9, etc,

we can declare DIM cell(5), then cell(0)=1, cell(1)=5, cell(3)=9

and so on. These can easily be populated with a simple LOOP.

The difference is we now only need one variable to store any

number of values. You can even create multidimensional arrays

– chessBoard(8, 8), for example, could be used to hold the

positions of the pieces: chessboard(0, 0)=Castle, chessboard(0,

1)=Knight and so on. Arrays are widely used across programming

languages and are fundamental; it is worth getting to know them.

The reason we’re using so many arrays is that we need a lot of

variables to store all the information about the stars, the lasers

and even the debris from explosions. Every single star, bullet and

piece of debris has a set of coordinates, an angle and speed of

travel, etc. Sound effects and the main soundtrack are loaded

and given identifi ers, and we end by loading a high score fi le so

the main score can be recorded.

04 Make an attract screen (lines 728 - 744)

A feature of retro arcade machines, the attract screen

is a simple graphic and/or animation used to entice passers-

by into popping a pound into the slot to play. The DEF PROC

attract section of code displays the initial title logo along with

a starfi eld effect for good measure. The starfi eld is updating by

calling the updateStars process that we defi ned previously.

05 Control the game’s speed (lines 854 - 859)

Let’s take a look at the speed limiter function as it is

used for both the main loop and the attract routine. Just before

the end of the main loop, PROC speedLimit is called to check to

see if we should run the main loop again or not. If our speedCount

has not reached the speedCounterMax limit then it ignores the

main loop and goes round again until it does. Only then is the main

loop executed. This allows us to control the entire game speed with

a single speedLimit variable (set at the very end of the program).

 frameStart = TIME
 CLS2
 IF speedCount > speedCounterMax THEN
 ... (the main code)
 PROC speedLimit
 ENDIF
 speedCount = speedCount + 1
 REPEAT

 DEF PROC speedLimit
 frameEnd = TIME
 timeTaken = frameEnd - frameStart
 speedCounterMax = gameSpeed - timeTaken
 IF speedCounterMax < 0 THEN speedCounterMax = 0
 ENDPROC

06 Check for keyboard input (lines 037 - 086)

The DEF PROC keys block is straightforward. The

routine checks to see if Z (or A), X (or D) or the Spacebar (or Enter)

have been pressed. If the rotation keys (Z and X) are pressed, the

player’s angle variables are adjusted accordingly, whereas the

Spacebar initiates a laser to be fired. Before firing it makes sure

there aren’t too many and which type, standard or particle, to fire.

150 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

12 Update the player (lines 197 - 214)

Next, the player is drawn (in yellow) using a simple

polyPlot function inside the updatePlayer procedure. Then

there are a few steps to determine the movement, so when you

go from one segment to another it glides over and doesn’t just

jump from segment to segment. The FN lerp function is used to

determine the movement step

13 Calculate the lerp (lines 863 - 865)

The lerp function (DEF FN lerp) takes three numbers, of

which the fi rst two are the start and end point of something. It

could be the distance between two points, a range of colours

or the score, both before and after. The third number is used

to work out an equal step between the fi rst two. The function

is used here to ensure that we get equal and therefore smooth

movement steps.

 DEF FN lerp(a, b, c)
 result = a + c * (b - a)
 = result

14 Playing fi eld and perspective (lines 217 - 265)

Next up, we draw the playing fi eld. This is handled

with the drawPlayingfi eld procedure. Each segment is drawn

using three lines – top, side and bottom – and repeats around

until completed. The Gap variable determines the size of each

segment. Moving straight on to the next procedure, since it’s

related, updatePerspective is a nice little routine. This simply

checks to see which corner of the screen the player is in and

then shifts the centre origin a bit so that everything is then

drawn from that centre point. It is a very effective way to create

a pseudo 3D effect.

15 Draw the power-up (lines 268 - 288)

The drawPowerUp procedure checks to see if the

power-up is within the outer radius and, if so, modifi es its

brightness depending on how close to the edge it is. Lerp is

used again to fi gure out an even step from one colour to the

next and smoothen the transition from the centre outwards.

07 Update the power-up (lines 089 - 132)

The updatePowerUp procedure checks to see if we

already have a power-up on-screen, and if not there’s a 1-in-

200 chance that one will be created. The fi rst power-up always

gives you particle lasers, then after this either a score boost or

an extra life is awarded. To see if we have collected the power-

up, we just check if it has reached the outer edge and is in the

same segment as the player: IF powerupAngle > playerAngle -

(gap / 2)’ and ‘IF powerupAngle < playerAngle + (gap / 2).

08 Activate the warp drive (lines 135 - 141)

The warp procedure checks to see if a warp has been

activated and, if so, modifi es the inner and outer radii so they

zoom off the screen. The inner radius is increased by a smaller

amount than the outer so you get a warp drive effect.

09 Check the lasers (lines 144 - 150)

One of the shorter sections of our fi nal code listing,

DEF PROC lasers is just a quick check (a simple IF statement)

to see if we are running particle lasers or not. The fi re speed

is adjusted accordingly, using hard-coded values rather than

more variables.

10 Stagger the spawns (lines 153 - 176)

Next up is DEF PROC enemies. Here we use a counter

variable, enemyDelay, to determine how long to wait between

each new enemy. Early in the game the delay is quite long

so you won’t likely see more than one at a time, but as you

progress then it is possible to see ten or more at once.

11 Update the starfi eld (lines 179 - 194)

To create the illusion of fl ying through space, we have

a playing fi eld that displays objects like enemies and the

background stars moving outwards from the centre. The stars

are handled with DEF PROC updateStars: the FOR CYCLE

loop counts from zero to maxStars. A distance is added at the

current angle using COS and SIN. If the star goes off the screen

then it is repositioned in the centre of the screen with a small

random offset, so they don’t all start in the dead centre.

Right Our modular,
PROC-based code

means you can
easily add in new

modules – another
power-up, for

example – to mix up
the core gameplay

Raspberry Pi Tips, Tricks & Hacks 151

Tips | Tricks | Hacks

17 Draw the enemies (lines 404 - 486)

Now for the enemies: DEF PROC drawEnemies. As you

will now be getting used to, the FN lerp is used to maintain

smooth movement steps. It really is a very cool little function,

that one. The position is calculated and then the enemy is

plotted. We then check to see if it comes into contact with the

player and again, if so, then debris fl ies about, the player’s lives

are reduced by one and we check to see if it is game over. If

we’re not out of lives then we warp the level off the screen and

start afresh.

18 Draw the player (lines 489 - 501)

Firstly, the c and s variables are used to store the

current COS and SIN results. This is so we don’t have to

use tmpPlayerAngle + 90 + playerTurn against every draw

calculation. The u variable is the distance from the centre of

the screen. The player is then drawn using a polyPlot function.

 DEF PROC drawPlayer
 COLOUR = Yellow
 c = COS (tmpPlayerAngle + 90 + playerTurn)
 s = SIN (tmpPlayerAngle + 90 + playerTurn)
 u = gHeight / 80
 polyStart
 polyPlot ((u * 5 * c) - (u * 5 * s) + playerX, (u *
5 * s) + (u * 5 * c) + playerY)

 polyPlot ((u * 5 * c) - 0 + playerX, (u * 5 * s) +
playerY)

 polyPlot (0 - (u * -2 * s) + playerX, (u * -2 * c)
+ playerY)

 polyPlot ((u * -5 * c) - 0 + playerX, (u * -5 * s)
+ playerY)

 polyPlot ((u * -5 * c) - (u * 5 * s) + playerX, (u
* -5 * s) + (u * 5 * c) + playerY)

 polyPlot ((u * -7 * c) - 0 + playerX, (u * -7 * s)
+ playerY)

 polyPlot (0 - (u * -4 * s) + playerX, (u * -4 * c)
+ playerY)

 polyPlot ((u * 7 * c) - 0 + playerX, (u * 7 * s) +
playerY)

 polyEnd
 ENDPROC

19 Display remaining lives (lines 507 - 524)

Our next procedure, DEF PROC plotPlayerLives, helps

us to display the number of lives that the player has left at the

top-right of the screen. This routine positions the location just

below the top with GHEIGHT and then draws the lives from

left to right using polyPlot commands.

20 Check progress (lines 527 - 538)

Now we check to see how far we’ve got with the

checkProgress block. Every time we kill an enemy, the progress

variable is increased, and if we kill enough then we surpass the

advance variable, which warps us off to the next level. A score

bonus is also awarded.

 DEF PROC checkProgress
 IF progress = advance THEN
 playSample (sfx(7), 4, 0)
 oldScore = score
 score = score + ((10 * scoreBoost) * level)
 scoreTime = 1
 level = level + 1
 warp = TRUE
 advance = advance + 1
 enemyDelay = enemyDelay + 240 / targetfps
 ENDIF
 ENDPROC

21 Update the debris (lines 541 - 552)

Starfi elds need starjunk, so next we have a very simple

updateDebris procedure. Each piece of debris is updated with

its new position and then plotted in a random colour.

22 Update the scores (lines 555 - 569)

DEF PROC updateGameInfo is responsible for

displaying the current score and level. Would you believe it,

yet another use for FN lerp! This time it works out the value

required to equally increment the score each time any points

are awarded. This is how the score increases as if it is counting

up the numbers and not just adding a complete number each

time like a simple addition.

23 Start the game (lines 572 - 725)

The setup procedure is called every time you start

a new level, either from the attract screen or after a warp is

initiated. All level variables are reset – not the score or diffi culty,

but pretty much everything else is reset or cleared ready to

start again.

Then, about half way down, the WHILE intro < radius CYCLE

statement starts a loop in which the playing fi eld is zoomed into

the screen. The player is displayed, and score and lives plotted.

Lasers and enemies are reset and we’re off!

24 Take it to the next level
And there you have it. There’s still plenty of scope for

improvement. It could include more enemies, a smart bomb,

more audio tracks, a jump feature and a proper end sequence

with a high score table, for example. We hope you have enjoyed

playing with 73MP357 and that you do go on to make many

improvements – we’d love to see them if you do, so please send

them in to us here at LU&D or straight to the FUZE website.

We also hope you’ve been intrigued by what can be achieved

with FUZE BASIC. We don’t expect you to keep using BASIC

forever, but if it has given you the programming bug and now

you want to climb the language ladder then we have done our

job. Our expert recommends starting with C++; it is still the

most widely-used coding language in the world and most other

languages stem from it or are at least similar. If you can code in

C++ then you’re pretty much set and will easily be able to adapt

to just about any other language. Good luck!

To fi nd out more about FUZE BASIC and the FUZE in general

please visit www.fuze.co.uk/bks-967.

16 Draw the lasers (lines 291 - 401)

DEF PROC drawlasers is huge, but actually there’s a

lot of repetition so it’s not as tough as it looks. The fi rst section

works out, depending on whether we’re using a standard or

particle laser, the position of each individual laser. We then

perform pretty much the same calculations on each instance.

Notice that, when working on the particle version, there are two

(left and right) to deal with.

Following this we check to see if any of the enemies have

come into contact with a laser. This is done by comparing the

laser distance and segment to that of each enemy – if they

match, then BOOM! The explosion takes place and debris goes

everywhere! The enemies are reduced by one, a score is added

and sound effects are played depending on laser type.

152 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Set up and deploy a mobile solution to take
night-time photos of your garden’s hidden wildlife

Capture photos at night
with the NoIR Pi camera

You are probably already familiar with the Raspberry Pi
camera module. However, it is also available in the NoIR edition

– ‘NoIR’ in this instance being shorthand for ‘no infrared’. Using

this module, you can use the camera to take photos and video

footage in the dark, similar to a night vision camera. Many of

us are fortunate enough to have a wide variety of animals that

visits our gardens and homes, and while we obviously see them

more during the day, there are also a large number of nocturnal

visitors to your garden. This tutorial shows you how to set up your

camera, then add and combine an infrared light source and PIR

motion sensor to trigger the camera and photograph night-time

wildlife. Each photo that is captured is saved to the Pi and a

‘time stamp’ is also added to monitor and track the time that the

animal visited your garden.

01 Attach the NoIR camera module
To get started, add your camera to the Raspberry Pi.

It is vital that you ensure that you remove all static electric

charge you may have built up by touching, say, a radiator fi rst,

as the camera can be damaged or even destroyed by static.

The blue-coloured label points away from the HDMI port.

Once in place, start up the Raspberry Pi as normal. Access the

confi guration settings using sudo raspi-confi g and enable the

camera as shown below, then reboot.

It is always advisable to update the software, so type this into

the command line:

 sudo apt-get update
 sudo apt-get upgrade

What you’ll need
 NoIR camera module

 LISIPAROI LED light ring
bit.ly/1meQGaR

 PIR Sensor

 Portable battery

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 153

Tips | Tricks | Hacks

02 Take a picture
Once the Pi is updated, test that the camera is working

correctly. In the LXTerminal, enter the following: raspistill -v -o

test.jpeg. When run, you will see a brief preview on the screen

and a picture will be taken and saved with the fi le name ‘test’.

This fi le is saved in the /home/pi folder. The parameter –o is for

output and this is the name of the fi le you save the image as. For

example, raspistill –o keyboard.jpeg saves the image as a fi le

called keyboard.

03 Using Python to take pictures
In this project, you will use Python to control the

NoIR module and capture the pictures. Taking a picture with

Python can be easily achieved with just a few lines of code.

Open your Python editor and create the function below, then

save and run. The image can be previewed using the code

camera.start_preview() (line 6). To take a picture, use camera.

capture(‘nature.jpg’) (line 8). Replace ‘nature’ with the name

that you wish to call the image fi le. This will test that the camera

is working correctly with Python.

 import time
 import picamera

 def Nature_selfie()
 with picamera.PiCamera() as camera:
 camera.start_preview()
 time.sleep(2)
 camera.capture(‘nature.jpg’)

 Nature_selfie()

05 Connecting up the LISPARIO
Connecting the LISIPAROI is easy: simply take four

female-to-female leads and attach them to the pins on the

LISIPAROI. Connecting to the Raspberry Pi is easy, too: the pins

required are 5V, GND, GND and the GPIO 10 pin. In this project,

the code uses the BCM pin numbering system – the physical pin

number is provided here for ease. The 5V is attached to physical

pin 4, the ground wires go to pins 32 and 39, although there are

several GND pins you can use. The fi nal wire is the GPIO 10 pin,

which is physical pin number 19 on the board. Now you have your

LISIPAROI connected and you are ready to take a picture.

04 But does it work?
When you take your fi rst photo in the dark, it may

appear that the NoIR module does not work. The picture is not

a night vision spy-style photo; in fact, it is probably completely

black. What you need to change this is an infrared light source.

The LISIPAROI is an add-on for the camera module which is

designed to provide additional illumination when taking pictures

or recording video in the dark. It features extra mounting points,

which are perfect for using custom mounts or a gooseneck

holder. There are two versions: a standard for the original

camera and the NoIR version. The infrared LISIPAROI (noted with

clear LEDs) has 12 infrared LEDs arranged around the camera

module to offer a wide spread of light when used in low/zero light

conditions, making it perfect for capturing night wildlife activity.

Cron, which many

say stands for

Commands Run

Over Night, is used

as a time-based

job scheduler

which permits

you to schedule

jobs (commands

or shell scripts) to

run periodically at

certain times or

dates. It is commonly

used to automate

system maintenance

programs used for

administration or

disk-related tasks.

Cron

Taking a picture with Python
can be easily achieved with
just a few lines of code

Above The NoIR camera module picks up just enough light to enable
you to take some fascinating outdoor photography at night

154 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks Tips | Tricks | Hacks

10 Saving as a new picture
Currently, when the Pi takes a picture using the code in

Step 3 it overwrites the existing file because both files have the

same filename. This is not suitable for taking multiple pictures

over a period of time.

To ensure the files are not over-written, create a variable

called File_Number. Each time the camera is triggered this

variable is incremented by a value of one. So in the example

below, the first file is called Nature1.jpg, then the next files are

Nature2.jpg, Nature3.jpg and so on. This saves each new photo

with a different file name and won’t overwrite existing images.

 camera.capture(“Nature” + str(File_Number) + “.jpg”)
 File_Number = File_Number + 1

11 Add the time the picture was taken
You may be keen to know the time that the camera was

triggered and the pictures taken, especially if the setup has

been running over night. To do this, create a new variable called

time_of_photo, at the start of the program, to store the current

time. To retrieve the time that the photo was taken use time.

asctime(time.localtime(time.time())). This will check the local

time of your Raspberry Pi and save it to the variable time_of_

GPIO pins are a

physical interface

between the Pi and

the outside world. At

the simplest level,

you can think of them

as switches that you

can turn on or off. You

can also program

your Raspberry Pi to

turn them on or off.

The GPIO.BCM option

means that you are

referring to the pins

by the “Broadcom

SOC channel”

number. If you start

counting the pins,

this is the physical

pin number. The

GPIO.BOARD option

specifies that you are

referring to the pins

by the plug number,

ie the numbers

printed on the board.

BCM
number

08 Connecting the PIR sensor
Time to connect the PIR. To check this is working

correctly, first remove the LISIPAROI wires. The PIR has three

wires: the 5V, a ground and the out wire. Remember you are using

the BCM pin numbering system, so the number stated in the

code will be the GPIO pin number on the Raspberry Pi. The +5V

wire connects to physical pin 2, the out connects to pin 26(GPIO

7) and the Ground connects to physical pin 6.

09 Testing the PIR
Now that the PIR sensor is connected, test that it

is working correctly and adjust the settings to ensure that it

triggers correctly. Open your Python editor, open a new file and

enter the test code below. The important line of code is :

 GPIO.add_event_detect(PIR, GPIO.RISING,
callback=Motion_Sensing)

It is set to detect the GPIO rising as the heat from, say, a badger is

detected by the PIR and it triggers the GPIO pin 7. The Raspberry

Pi identifies that the voltage is rising and executes the callback.

In this example, the callback is a function called Motion_

Sensing, which when run will display the phrase “We see you” in

the Python console window. When the badger moves, there is

another change in heat and the PIR senses this.

 import time
 import RPi.GPIO as GPIO
 GPIO.setmode(GPIO.BCM)

 PIR = 7
 GPIO.setup(PIR, GPIO.IN)

 print “Ready to find you”
 time.sleep(2)

 def Motion_Sensing(PIR):
 print “We see you”

 try:
 GPIO.add_event_detect(PIR, GPIO.RISING,
callback=Motion_Sensing)

 while 1:
 time.sleep(100)
 except KeyboardInterrupt:
 print “Quit”
 GPIO.cleanup()

07 PIR sensor
A PIR sensor, ‘passive infrared sensor’, picks up the

heat energy that is given off by objects. This radiation is invisible

to the human eye because it radiates at infrared wavelengths.

However, it can be detected by electronic devices such as the

PIR. The sensor can be used to detect when a change in heat

has occurred. The PIR has two dials that can be changed to

adjust the settings of the PIR. The first is to adjust the ‘heat’

sensitivity, which will make the PIR trigger with more or less of a

heat change. The second dial adjusts the rest time between the

sensor stopping and restarting. This is originally set to a delay of

around a few seconds.

06 Another test
Now it’s time to adapt your previous camera code to

turn on the LISPARIO and capture a picture in the dark. First,

import the GPIO module (line 1, below): import RPi.GPIO as GPIO.

Set the GPIO numbering system to BCM with the code GPIO.

setmode(GPIO.BCM) on line 4. The LISAPRIO runs on GPIO pin

10, so set this on line 5: GPIO.setup(10, GPIO.OUT). Before the

picture is taken, set the output to HIGH on line 6 to turn the LEDs

on: GPIO.setup(10, GPIO.HIGH). The picture is then taken and

saved. On the last line, the LEDs are turned off. Check your image

file – you should now have a night vision-style photo.

 import RPi.GPIO as GPIO
 import time
 import picamera
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(10, GPIO.OUT)
 GPIO.output(10, GPIO.HIGH)

 with picamera.PiCamera() as camera:
 camera.start_preview()
 time.sleep(2)
 camera.capture(‘nature.jpg’)
 camera.stop_preview()

 GPIO.output(10, GPIO.LOW)

Raspberry Pi Tips, Tricks & Hacks 155

Tips | Tricks | Hacks

15 Automatically start the program
If you deploy the project outside then you will probably

not have a monitor or screen attached, meaning that you cannot

see what the program is doing. To sort this, set the program to

start automatically when the external power supply is plugged in.

First, write down where you have saved the Night Box program –

for example, in the /home/pi folder, called Night_Box.py, in which

case you’d use /home/pi/Night_Box.py. Double-check you’ve got

the correct path by opening the LXTerminal and typing:

 sudo cat /home/pi/name_of_your_script.py

If correct, this will display the contents of your Python code. The

next step is to create a Cron job by modifying the ‘crontab’. To edit

it, type sudo crontab –e (this will run the Cron task for all users)

Scroll to the bottom of the window and then add the following

line to the fi le:

 @reboot python /home/pi/name_of_your_program.py &

The “&” at the end will run the code in the background and ensure

your Raspberry Pi will boot up as normal. Save the fi le by hitting

Ctrl+X followed by Y, and then reboot.

16 Deploy the Night Box
To deploy the setup effectively you will want to create a

box or holder for the PIR, LISIPAROI, etc. This will protect them

from the weather, especially if it rains or snows. You may want to

consider a 3D-printed solution or even an old match box to hold

the components. In the previous step you scheduled a Cron task

to start the program automatically when the Raspberry Pi is fi rst

booted up. Find a suitable location and set up your box. Plug in

your portable power supply and the Raspberry Pi will boot up and

start the program. Check back the next day to see who visited

your garden the previous night!

14 Taking a video
You may decide that you would prefer to take a video

when the PIR is triggered; you could adapt the program to trigger

and record videos of wildlife that may visit your garden or the

location where your camera is. Again, Python makes it simple to

record video using the code camera.start_recording(‘/home/

pi/Desktop/evidence.jpg’) to start the recording, which you can

save as a fi le called evidence. If you want to video for, say, 20

seconds then use time.sleep(20) before stopping the recording

with camera.stop_recording(‘/home/pi/Desktop/evidence.jpg’).

 camera.start_preview()
 camera.start_recording(‘/home/pi/Desktop/evidence.h264’)
 time.sleep(20)
 camera.stop_recording()

12 Add the time to the picture
Recording the time that the picture is taken is only

relevant if you are there watching and waiting for wildlife to

trigger the camera, and you can see the time value. A better

solution is to use the time to add a ‘time stamp’ to the picture.

This means that when you view each image you can see the time

that the pictures were taken at the top. The line of code required

is: camera.annotate_text = “time_of_photo”.

13 Recap
Before you fi nalise the project, a quick recap on the

features and setup: the NoIR camera module is attached to the

Pi to capture photos in the dark. This requires an infrared light

source, which is provided by the LISIPAROI. A PIR is attached

and used to sense changes in heat, which then turns the LEDs

on and triggers the camera to capture a picture. The current time

is added to the picture for future reference. The diagram on the

facing page shows the wiring solution for the LISIPAROI and PIR.

import time
import os
import sys
import picamera
import subprocess
import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
###Set up the PIR
PIR = 7
GPIO.setup(PIR, GPIO.IN)
###Set up the LISPARIO
GPIO.setup(10, GPIO.OUT)

global File_Number ###number of photo
global file_name ###name of photo
File_Number = 1

def Nature_selfie(): ###Takes a picture of the wee beastie###
 global File_Number
 global file_name
 ###Grabs current time###
 time_of_photo = time.asctime(time.localtime(time.time()))
 GPIO.output(10, GPIO.HIGH)
 with picamera.PiCamera() as camera:
 #camera.start_preview()
 time.sleep(0.5)
 camera.annotate_text = time_of_photo
 camera.capture(“Nature” + str(File_Number) + “.jpg”)
 file_name = “Nature” + str(File_Number) + “.jpg”
 print file_name
 File_Number = File_Number + 1
 GPIO.output(10, GPIO.LOW) ###Turn off LISPARIO

def Motion_Sensing(PIR): ###Response to movement###
 print “We see you”
 Nature_selfie()

###Code to respond to a movement of the wee beastie###
print “Ready to find you”
time.sleep(2)

try:
 GPIO.add_event_detect(PIR, GPIO.RISING, callback=Motion_Sensing)
 while 1:
 time.sleep(100)
except KeyboardInterrupt:
 print “Quit”
 GPIO.cleanup()

Full code listingphoto. Ensure that your Pi’s clock is set correctly before you

start your program.

 time_of_photo = time.asctime(time.localtime(time.
time()))

Tips | Tricks | Hacks

What you’ll need
 Raspberry Pi 3

 Bluetooth USB dongle (if

using an older Pi model)

Create a program that locates Bluetooth
devices and responds to them

Use your Raspberry Pi to
fi nd and track your phone

The Raspberry Pi model 3 saw the introduction of
embedded Wi-Fi and Bluetooth capabilities. This now

makes it even easier to interact with Bluetooth-enabled

devices such as mobile phones, tablets and speakers. The

Python programming language supports a range of libraries

that enable you to interact, monitor and control various

elements of a Bluetooth device. This tutorial combines the

Pi’s Bluetooth hardware with Python code to create three

simple but useful programs. First, build a short program to

search for Bluetooth-enabled devices and return the 12-

part address of each device. Once you have obtained the

addresses, you can then scan and fi nd Bluetooth services

that are available on that particular device. Finally, use

the Bluetooth address and some conditions to check

which devices are present in a building and in turn, which

people are present or absent in a building, responding

with a desired action – it’s a kind of automated Bluetooth

checking-in system.

01 Using Bluetooth
Bluetooth is a wireless standard for exchanging

data between devices over short distances of between

one and ten metres. The current version, Bluetooth v5, was

notifi ed in June 2016 and has an increased range of over

200 metres. It will be released in 2017 and will probably be

a staple of many IoT devices and applications. Bluetooth

uses the standard IEEE 802.11, which is the same standard

as Wi-Fi. They both have similarities such as setting up a

connection, transferring and receiving fi les and streaming

audio and media content. If you have a Pi 2 or lower, you can

still create and use these programs by using a Bluetooth

USB dongle.

156 Raspberry Pi Tips, Tricks & Hacks

Tips | Tricks | Hacks

Is your
dongle working?
If you are using a USB Bluetooth Dongle then you can check

that it is working by plugging it in, then restarting your

Raspberry Pi by typing the command sudo reboot. When

reloaded, check that the Dongle has been recognised; load

the LX Terminal window and type lsusb. This will list all the

connected USB devices. You can also type hcitool dev to

identify the dongle and return its USB address.

156 Raspberry Pi Tips, Tricks & Hacks

Raspberry Pi Tips, Tricks & Hacks 157

Tips | Tricks | Hacks

02 Install the required libraries
Although the Raspberry Pi OS image comes with

a Bluetooth library for interfacing with devices, for this

tutorial you will want to control the interface with Python

code. Load up your Pi and open the LX Terminal window.

Check for and update/upgrade the OS, typing in lines 1 and

2. Then install the Python development tools, line 3. Finally

install two further Bluetooth development libraries. Once

they have completed, restart your Pi by typing sudo halt.

 sudo apt-get update
 sudo apt-get upgrade
 sudo apt-get install python-pip python-dev
ipython
 sudo apt-get install bluetooth libbluetooth-dev
 sudo pip install pybluez

03 Load Python
Load the LX Terminal and type sudo idle, this will

open the Python editor with super-user privileges, which

will give you access to the USB hardware via Python code.

Start a new Window and import the fi rst Bluetooth module,

line 1. Then add a short message to inform the user that the

program is searching for nearby devices.

 import Bluetooth
 print(“Searching for device...”)

04 Search for the names of the devices
The next line of your program searches for the

names of the Bluetooth enabled devices. Each device

must have Bluetooth enabled and be discoverable in order

to be found. On the next line down, create a variable called

nearby_devices to store the names and then use the

code bluetooth.discover_devices to look up the names of

the devices.

 nearby_devices = bluetooth.discover_
devices(lookup_names = True)

05 Print the total number of devices found
Each of the names of any discoverable devices are

now stored in a variable. Use the code len(nearby_devices)

to return the number of items stored in the variable, this

is the number of Bluetooth devices the program has

found. Then print out the total number of devices. Add the

following code after the previous line of your program.

 print(“found %d devices” % len(nearby_devices))

06 The Bluetooth address (BD_ADDR)
Each Bluetooth-enabled device has a Bluetooth

address that is a combination of 12 alphanumeric

characters; for example, 69:58:78:3A:CB:7F. The addresses

are hexadecimal, which means they can contain

import bluetooth

print(“Searching for devices....”)

nearby_devices = bluetooth.discover_
devices(lookup_names = True)

print(“found %d devices” % len(nearby_
devices))

for addr, name in nearby_devices:
 print(“ %s - %s” % (addr, name))

[Find a list of services].py

#!/usr/bin/env python
import bluetooth
from bluetooth import *

device_address = “98:44:98:3A:BB:7C”

#find services on the phone
services = find_service(address=device_
address)
#print services

for i in services:
 print i, ‘\n’

[Check to see who is in].py

#!/usr/bin/python
add a def and then a while statement
import bluetooth
import time

print “Blue-Who Finder”

#find the devices and the name of the device
devices = bluetooth.discover_devices(lookup_
names = True)

#print how many devcies are found
print(“Found %d devices” % len(devices))

#print the devices and the names
for addr, name in devices:
 print(“ %s - %s” % (addr, name))

time.sleep(2)
print “Check to see who is in the building”
print “Checking “ + time.strftime(“%a, %d %b
%Y %H:%M:%S”, time.gmtime())
time.sleep(1)
if len (devices) == 0:
 print “No one is currently in the
building”

#check the addresses against list to see who
is near
for person in devices:

 device = bluetooth.lookup_
name(“68:88:98:3R:BB:7C”, timeout=5)
 if (device != None):
 print “TeCoEd is in”
 else:

Full code listing

Tips | Tricks | Hacks

158 Raspberry Pi Tips, Tricks & Hacks

services = find_service(address=device_address)

11 Print out each service
The last step of the program is to print out each of

the services. These are stored in a list and therefore need

to be printed out one line at a time. Create a loop using the

code, for i in services, line 1. This loop will check for each of

the individual items in the list. It will then print each of the

items in the list, each Bluetooth service, line 2. Use the code

‘\n’ to print each service onto a new line.

 for i in services:
 print i, ‘\n’

12 What are the services?
Save and run your program and you will be

presented with a long list of services, especially if you are

using a modern device. Using these services with Python

is more complex and requires several other lines of code.

However, you can potentially transfer and receive fi les,

stream music and even shut the device down. There are

more details and commentary on the Blueman Github page,

https://github.com/blueman-project/blueman. Remember

though that these tools are purely for personal use.

13 Find a device and a person
In Step 7 you used a short program to discover

the Bluetooth-enabled device and check and return the

address of the device. Now use the bluetooth.lookup_

name code line to search for a particular device and return

whether it is found or not. If it is found then the device is

present and if not, then we can assume the device is not.

However, remember that the Bluetooth may be turned off.

address that is a combination of 12 alphanumeric

characters; for example, 69:58:78:3A:CB:7F. The addresses

are hexadecimal, which means they can contain

numbers from 0 to 9 and letters from A to F. Most devices

manufactures will include the address on a sticker attached

to the hardware or within the user manual.

07 Print the name and address of the device
For each of the devices that the program has

located, (each of the items in the list), print out the

address of the device and also the name of the device. This

information is used in the next sections to fi nd out what

available services a device has and also to add an action

when a device is found. Save the program and then run it,

ensuring that the any devices to be found are in Discovery

mode. You will be presented with a list of the devices that

includes the name and address of each.

 for addr, name in nearby_devices:
 print(“ %s - %s” % (addr, name))

08 Find the available services on a Bluetooth
device

Run the previous program and write down the Bluetooth

address of the device. Start a new Python program and

save it. Next open up a new Python window and start a new

program. Input the two required libraries, lines 1 and 2.

 #!/usr/bin/env python
 import bluetooth
 from bluetooth import *

09 Set up the address to fi nd
On the next line down, enter the address of the

device that you want to fi nd the services on. Use the

previous program or look at the sticker to obtain the

address. Next, create a variable called ‘device_address’ to

store the address. Use the following code and replace the

example address with the Bluetooth address of your device.

 device_address = “69:58:78:3A:CB:7F” # enter
address of device

10 Find a service
On the next line down, add the code to fi nd the

services that your device supports. Create a new variable

called services, which will store a list of the services. Use

the code, fi nd_services, followed by the Bluetooth address

of your enabled device to search through a list of available

services and store each of them in the ‘services’ variable.

Is your Bluetooth
Dongle compatible?
If you have an older Raspberry Pi model 1, 2 or the Pi Zero then

Bluetooth capability is not included. However, you can buy a

USB Bluetooth dongle and attach it via one of the USB ports

to add capability. Not all Bluetooth dongles are compatible so

there is a developing list of the tried and tested ones available.

Check here before you purchase one:

http://elinux.org/RPi_USB_Bluetooth_adapters

Tips | Tricks | Hacks

Raspberry Pi Tips, Tricks & Hacks 159

In your Python program add the line to locate the device,

replacing the example address with the address of the one

that you want to locate.

 device = bluetooth.lookup_
name(“33:38:33:6A:BQ:7C”, timeout=5)

14 Respond if the device is found
Once a device has been searched for, check to see

if it is present and responds, line 1. Use an IF statement

to see if the device is not found. This uses the symbol ‘!=’,

which means ‘is not’. However, the code is checking if it is

not ‘None’ – in other words the device is found. If it fi nds the

named device then print out a message, line 2. If it does not

fi nd the device, line 3, then print out a message to notify

the user, line 4. Add these lines of code underneath the

previous line. Ensuring that your Bluetooth is enabled, save

and run the program to fi nd your device.

 if (device != None):
 print “TeCoEd is in”
 else:
 print “Tecoed is out”

15 Find a different device
To fi nd other devices and respond with an action,

simply use the same sequence of code but fi rst create a

different variable to store the response in. Add the code on

the next line down and remember to de-indent it. Rename

the variable, for example call it device_one and edit the

address to match that of the second device.

 Device_one = bluetooth.lookup_
name(“44:67:73:6T:BR:7A”, timeout=5)

 print “Tecoed is out”

 time.sleep(1)

 device2 = bluetooth.lookup_
name(‘CC:3B:4F:CA:5B:1A’, timeout=5)
 if (device2 != None):
 print “The Boss is in the building,
back to work”
 else:
 print “The Boss is still out, Facebook
time!”

 time.sleep(1)

 device3 = bluetooth.lookup_
name(“00:26:DF:6F:D2:C8”, timeout=5)
 if (device3 != None):
 print “Wow Sherlock is here O wise
one!”
 else:
 print “Sherlock is still out on a
case”

 time.sleep(1)

 device4 = bluetooth.lookup_
name(“28:18:78:47:0C:56”, timeout=5)
 if (device4 != None):
 print “Babbage is present in the
building”
 else:
 print “Babbage is not here”

 device5 = bluetooth.lookup_
name(“E0:W8:47:77:6F:41”, timeout=5)
 if (device4 != None):
 print “We have a Bogie in the area!”
 else:
 print “Airspace is clear”

16 Another response, the next device is found
As before, check and respond, line 1, using an IF

statement to see if the device is not found. Remember to

use the new variable name, in this example, device_one. If it

fi nds the named device then print out a message, line 2. If it

does not fi nd the device, line 3, then print out a message to

notify the user, line 4. Add these lines of code underneath

the previous line. Save and run the program to fi nd the two

particular devices within your location.

 if (device_one != None):
 print “Linux Laptop is in”
 else:
 print “Linux Laptop is out”

17 Add an alternative action
To customise the project further you could add your

own action to the devices on being discovered. For example,

use a strip of LEDs to fl ash each time a device enters the

location and is detected. Or use individual LEDs for each

individual device to indicate if the device is present or not.

How about combining the program with an LCD screen as

a message board for who is present and who is out? For

more inspiration, check out https://www.youtube.com/

watch?v=qUZQv87GVdQ

Variables
A variable is a location in the computer’s memory where you can

store data. In order to fi nd the data again you give the variable a

suitable name or label. For example, days = 5. This means that

the ‘days’ variable current holds the number fi ve.

OF ANY OF THESE GRE AT MAG A ZINES

OR FROM JUS T $5 . 10 PER ISSUE IN THE US A**

Try 3 issuesTry 3 issuesTry 3 issues
for only £5for only £5for only £5

*

The essential magazine for the GNU generation

Every issue of Linux User & Developer is

packed with tips, tricks and tutorials created

by professionals to help you do more with

your Linux system. Each issue features a

dedicated, practical Raspberry Pi section

packed with inspirational projects.

LINUX USER AND DEVELOPER

TRY
TODAY

TRY
3 ISSUES
FOR £5

Order securely online www.imaginesubs.co.uk/book5
Enter the promo code BOOK5 to get these great offers

*This offer entitles new UK Direct Debit subscribers to receive their fi rst 3 issues for £5, after these issues standard subscriptions pricing will apply. Standard pricing available online.
Offer code BOOK5 must be quoted to receive this special subscriptions price. Your subscription will start with the next available issue. Subscribers can cancel this subscription at any time.

Details of the Direct Debit guarantee available on request. **Overseas pricing available online.

These offers will expire on
Sunday 31 December 2017

Please quote code BOOK5
†Calls cost 7p per minute plus your telephone company’s access charge

Order from our customer service team
Call 0844 856 0644† from the UK

or +44 1795 592 869 from the USA

SAVE UP TO 40% ON THE NEWSSTAND PRICE

Never miss
an issue

13 issues a year, and

as a subscriber you’ll

be sure to get every

single one

Delivered
to your home

Free delivery of every

issue, direct to your

doorstep

Get the
biggest savings
Get your favourite

magazine for less by

ordering direct

HOW TO USE
EVERYTHING YOU NEED TO KNOW ABOUT
ACCESSING YOUR NEW DIGITAL REPOSITORY

Having trouble with any of the techniques in this issue’s tutorials? Don’t know how to make the best
use of your free resources? Want to have your work critiqued by those in the know? Then why not
visit the Bookazines or Linux User & Developer Facebook page for all your questions, concerns and
qualms. There is a friendly community of experts to help you out, as well as regular posts and
updates from the bookazine team. Like us today and start chatting!

facebook.com/ImagineBookazines
facebook.com/LinuxUserUK

NEED HELP WITH
THE TUTORIALS?

To access FileSilo, please visit http://www.filesilo.co.uk/bks-B38/

01 Follow the on-screen
instructions to create

an account with our secure
FileSilo system, or log in and
unlock the issue by
answering a simple question

about the edition
you’ve just read.
You can access
the content for
free with each
edition released.

02Once you have logged
in, you are free to

explore the wealth of content
made available for free on
FileSilo, from great video
tutorials and online guides to
superb downloadable
resources. And the more
bookazines you purchase,
the more your instantly
accessible collection of digital
content will grow.

03 You can access
FileSilo on any

desktop, tablet or
smartphone device using
any popular browser (such
as Safari, Firefox or Google
Chrome). However, we
recommend that you use a
desktop to download
content, as you may not be
able to download files to your
phone or tablet.

04 If you have any
problems with

accessing content on FileSilo,
or with the registration
process, take a look at the
FAQs online or email
filesilohelp@
imagine-publishing.co.uk.

